FBXL14 inhibits foam cell formation and atherosclerosis plaque progression by activating the NRF2 signal axis through ubiquitination of DUSP6.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wenjie Luo, Yubin Chen, Cheng Fang, Hui Shi, Fanyan Luo
{"title":"FBXL14 inhibits foam cell formation and atherosclerosis plaque progression by activating the NRF2 signal axis through ubiquitination of DUSP6.","authors":"Wenjie Luo, Yubin Chen, Cheng Fang, Hui Shi, Fanyan Luo","doi":"10.1080/10799893.2025.2466689","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Atherosclerosis is characterized by persistent inflammatory condition, leading to various cardiovascular complications. Foam cell formation, resulting from macrophage uptake of oxidized low-density lipoprotein (ox-LDL), contributes significantly to atherosclerosis progression. This study was designed to investigate the involvement of bispecific phosphatase-6 (DUSP6) and its potential regulatory mechanisms in foam cell formation and atherosclerosis.</p><p><strong>Methods: </strong>We employed THP-1 cells to induce foam cell formation. The lipid droplet accumulation, cholesterol content, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were evaluated using Oil Red O staining, cholesterol assay, ELISA, and qRT-PCR techniques. We investigated DUSP6 ubiquitination via immunoprecipitation and western blot (WB) analysis. A bioinformatics approach identified FBXL14 as a potential E3 ligase involved in DUSP6 ubiquitination, further confirmed by siRNA and overexpression experiments. The impact of FBXL14 on the NRF2 signaling pathway was assessed using WB analysis.</p><p><strong>Results: </strong>DUSP6 interference suppressed foam cell formation and inflammatory factor secretion. Upon ox-LDL treatment, DUSP6 underwent deubiquitylation, with FBXL14 emerging as the candidate E3 ligase. FBXL14 overexpression induced DUSP6 ubiquitination, leading to the NRF2 signaling pathway activation. It counteracted with DUSP6 overexpression on foam cell formation and inflammation. In ApoE-/- mice, sh-DUSP6 adenovirus injection mitigated atherosclerotic lesion progression and improved the lipid profile, with increased the proteins expression of NQO1, HO-1, and NRF2 in aortic tissue.</p><p><strong>Conclusion: </strong>DUSP6 and FBXL14 play vital roles in modulating foam cell formation and inflammatory responses in atherosclerosis. Targeting these molecules could offer therapeutic potential in attenuating atherosclerosis-related complications.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"107-117"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2025.2466689","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Atherosclerosis is characterized by persistent inflammatory condition, leading to various cardiovascular complications. Foam cell formation, resulting from macrophage uptake of oxidized low-density lipoprotein (ox-LDL), contributes significantly to atherosclerosis progression. This study was designed to investigate the involvement of bispecific phosphatase-6 (DUSP6) and its potential regulatory mechanisms in foam cell formation and atherosclerosis.

Methods: We employed THP-1 cells to induce foam cell formation. The lipid droplet accumulation, cholesterol content, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were evaluated using Oil Red O staining, cholesterol assay, ELISA, and qRT-PCR techniques. We investigated DUSP6 ubiquitination via immunoprecipitation and western blot (WB) analysis. A bioinformatics approach identified FBXL14 as a potential E3 ligase involved in DUSP6 ubiquitination, further confirmed by siRNA and overexpression experiments. The impact of FBXL14 on the NRF2 signaling pathway was assessed using WB analysis.

Results: DUSP6 interference suppressed foam cell formation and inflammatory factor secretion. Upon ox-LDL treatment, DUSP6 underwent deubiquitylation, with FBXL14 emerging as the candidate E3 ligase. FBXL14 overexpression induced DUSP6 ubiquitination, leading to the NRF2 signaling pathway activation. It counteracted with DUSP6 overexpression on foam cell formation and inflammation. In ApoE-/- mice, sh-DUSP6 adenovirus injection mitigated atherosclerotic lesion progression and improved the lipid profile, with increased the proteins expression of NQO1, HO-1, and NRF2 in aortic tissue.

Conclusion: DUSP6 and FBXL14 play vital roles in modulating foam cell formation and inflammatory responses in atherosclerosis. Targeting these molecules could offer therapeutic potential in attenuating atherosclerosis-related complications.

Clinical trial number: Not applicable.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Receptors and Signal Transduction
Journal of Receptors and Signal Transduction 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services: BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信