Covalent inhibition of the SARS-CoV-2 NiRAN domain via an active-site cysteine.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genaro Hernandez, Adam Osinski, Abir Majumdar, Jennifer L Eitson, Monika Antczak, Krzysztof Pawłowski, Hanspeter Niederstrasser, Kelly A Servage, Bruce Posner, John W Schoggins, Joseph M Ready, Vincent S Tagliabracci
{"title":"Covalent inhibition of the SARS-CoV-2 NiRAN domain via an active-site cysteine.","authors":"Genaro Hernandez, Adam Osinski, Abir Majumdar, Jennifer L Eitson, Monika Antczak, Krzysztof Pawłowski, Hanspeter Niederstrasser, Kelly A Servage, Bruce Posner, John W Schoggins, Joseph M Ready, Vincent S Tagliabracci","doi":"10.1016/j.jbc.2025.108378","DOIUrl":null,"url":null,"abstract":"<p><p>The kinase-like NiRAN domain of nsp12 in SARS-CoV-2 catalyzes the formation of the 5' RNA cap structure. This activity is required for viral replication, offering a new target for the development of antivirals. Here, we develop a high-throughput assay to screen for small molecule inhibitors targeting the SARS-CoV-2 NiRAN domain. We identified NCI-2, a compound with a reactive chloromethyl group that covalently binds to an active site cysteine (Cys53) in the NiRAN domain, inhibiting its activity. NCI-2 can enter cells, bind to, and inactivate ectopically expressed nsp12. A cryo-EM reconstruction of the SARS-CoV-2 replication-transcription complex (RTC) bound to NCI-2 offers a detailed structural blueprint for rational drug design. Although NCI-2 showed limited potency against SARS-CoV-2 replication in cells, our work lays the groundwork for developing more potent and selective inhibitors targeting the NiRAN domain. This approach presents a promising therapeutic strategy for effectively combating COVID-19 and potentially mitigating future coronavirus outbreaks.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108378"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108378","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The kinase-like NiRAN domain of nsp12 in SARS-CoV-2 catalyzes the formation of the 5' RNA cap structure. This activity is required for viral replication, offering a new target for the development of antivirals. Here, we develop a high-throughput assay to screen for small molecule inhibitors targeting the SARS-CoV-2 NiRAN domain. We identified NCI-2, a compound with a reactive chloromethyl group that covalently binds to an active site cysteine (Cys53) in the NiRAN domain, inhibiting its activity. NCI-2 can enter cells, bind to, and inactivate ectopically expressed nsp12. A cryo-EM reconstruction of the SARS-CoV-2 replication-transcription complex (RTC) bound to NCI-2 offers a detailed structural blueprint for rational drug design. Although NCI-2 showed limited potency against SARS-CoV-2 replication in cells, our work lays the groundwork for developing more potent and selective inhibitors targeting the NiRAN domain. This approach presents a promising therapeutic strategy for effectively combating COVID-19 and potentially mitigating future coronavirus outbreaks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信