{"title":"Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review).","authors":"Shanshan Wang, Hongyan Zheng, Jianping Zhao, Jungang Xie","doi":"10.3892/ijmm.2025.5512","DOIUrl":null,"url":null,"abstract":"<p><p>Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability. The dual functions of lactylation in both histone and non‑histone proteins establish it as a crucial mechanism involved in various cellular processes, such as cell proliferation, differentiation, immune and inflammatory responses and metabolism. Specific enzymes, referred to as 'writers' and 'erasers', catalyze the addition or removal of lactyl groups at designated lysine sites, thereby dynamically modulating lactylation through alterations in their enzymatic activities. The respiratory system has a remarkably intricate metabolic profile. Numerous pulmonary diseases feature an atypical transition towards glycolytic metabolism, which is linked to an overproduction of lactate, a possible substrate for lactylation. However, there has yet to be a comprehensive review elucidating the full impact of lactylation on the onset, progression and potential treatment of neoplastic and inflammatory pulmonary diseases. In the present review, an extensive overview of the discovery of lactylation and advancements in research on the existing lactylation sites were discussed. Furthermore, the review particularly investigated the potential roles and mechanisms of histone and non‑histone lactylation in various neoplastic and inflammatory pulmonary diseases, including non‑small cell lung cancers, malignant pleural effusion, pulmonary fibrosis, acute lung injury and asthma, to excavate the new therapeutic effects of post‑translational modification on various pulmonary diseases.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5512","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability. The dual functions of lactylation in both histone and non‑histone proteins establish it as a crucial mechanism involved in various cellular processes, such as cell proliferation, differentiation, immune and inflammatory responses and metabolism. Specific enzymes, referred to as 'writers' and 'erasers', catalyze the addition or removal of lactyl groups at designated lysine sites, thereby dynamically modulating lactylation through alterations in their enzymatic activities. The respiratory system has a remarkably intricate metabolic profile. Numerous pulmonary diseases feature an atypical transition towards glycolytic metabolism, which is linked to an overproduction of lactate, a possible substrate for lactylation. However, there has yet to be a comprehensive review elucidating the full impact of lactylation on the onset, progression and potential treatment of neoplastic and inflammatory pulmonary diseases. In the present review, an extensive overview of the discovery of lactylation and advancements in research on the existing lactylation sites were discussed. Furthermore, the review particularly investigated the potential roles and mechanisms of histone and non‑histone lactylation in various neoplastic and inflammatory pulmonary diseases, including non‑small cell lung cancers, malignant pleural effusion, pulmonary fibrosis, acute lung injury and asthma, to excavate the new therapeutic effects of post‑translational modification on various pulmonary diseases.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.