Unraveling enhanced liver regeneration in ALPPS: Integrating multi-omics profiling and in vivo CRISPR in mouse models.

IF 5.6 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Hepatology Communications Pub Date : 2025-03-07 eCollection Date: 2025-03-01 DOI:10.1097/HC9.0000000000000630
Yuan Du, YiHan Yang, YiPeng Zhang, FuYang Zhang, JunJun Wu, JunXiang Yin
{"title":"Unraveling enhanced liver regeneration in ALPPS: Integrating multi-omics profiling and in vivo CRISPR in mouse models.","authors":"Yuan Du, YiHan Yang, YiPeng Zhang, FuYang Zhang, JunJun Wu, JunXiang Yin","doi":"10.1097/HC9.0000000000000630","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postoperative liver failure due to insufficient liver cell quantity and function remains a major cause of mortality following surgery. Hence, additional investigation and elucidation are required concerning suitable surgeries for promoting in vivo regeneration.</p><p><strong>Methods: </strong>We established the portal vein ligation (PVL) and associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) mouse models to compare their in vivo regeneration capacity. Then, RNA-seq and microRNA-seq were conducted on the livers from both mouse models. Weighted gene co-expression network analysis algorithm was leveraged to identify crucial gene modules. ScRNA-seq analysis was used to understand the distinctions between Signature30high hepatocytes and Signature30low hepatocytes. Moreover, in vivo, validation was performed in fumarylacetoacetate hydrolase knockout mice with gene editing using the CRISPR-cas9 system. A dual luciferase report system was carried out to further identify the regulatory mechanisms.</p><p><strong>Results: </strong>RNA-seq analysis revealed that ALPPS could better promote cell proliferation compared to the sham and portal vein ligation models. Moreover, a Plk1-related 30-gene signature was identified to predict the cell state. ScRNA-seq analysis confirmed that signature30high hepatocytes had stronger proliferative ability than signature30low hepatocytes. Using microRNA-seq analysis, we identified 53 microRNAs that were time-dependently reduced after ALPPS. Finally, miR-30a-3p might be able to regulate the expression of Plk1, contributing to the liver regeneration of ALPPS.</p><p><strong>Conclusions: </strong>ALPPS could successfully promote liver regeneration by activating hepatocytes into a proliferative state. Moreover, a Plk1-related 30-gene signature was identified to predict the cell state of hepatocytes. miR-30a-3p might be able to regulate the expression of Plk1, contributing to the liver regeneration of ALPPS.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"9 3","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000630","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Postoperative liver failure due to insufficient liver cell quantity and function remains a major cause of mortality following surgery. Hence, additional investigation and elucidation are required concerning suitable surgeries for promoting in vivo regeneration.

Methods: We established the portal vein ligation (PVL) and associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) mouse models to compare their in vivo regeneration capacity. Then, RNA-seq and microRNA-seq were conducted on the livers from both mouse models. Weighted gene co-expression network analysis algorithm was leveraged to identify crucial gene modules. ScRNA-seq analysis was used to understand the distinctions between Signature30high hepatocytes and Signature30low hepatocytes. Moreover, in vivo, validation was performed in fumarylacetoacetate hydrolase knockout mice with gene editing using the CRISPR-cas9 system. A dual luciferase report system was carried out to further identify the regulatory mechanisms.

Results: RNA-seq analysis revealed that ALPPS could better promote cell proliferation compared to the sham and portal vein ligation models. Moreover, a Plk1-related 30-gene signature was identified to predict the cell state. ScRNA-seq analysis confirmed that signature30high hepatocytes had stronger proliferative ability than signature30low hepatocytes. Using microRNA-seq analysis, we identified 53 microRNAs that were time-dependently reduced after ALPPS. Finally, miR-30a-3p might be able to regulate the expression of Plk1, contributing to the liver regeneration of ALPPS.

Conclusions: ALPPS could successfully promote liver regeneration by activating hepatocytes into a proliferative state. Moreover, a Plk1-related 30-gene signature was identified to predict the cell state of hepatocytes. miR-30a-3p might be able to regulate the expression of Plk1, contributing to the liver regeneration of ALPPS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Hepatology Communications
Hepatology Communications GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
8.00
自引率
2.00%
发文量
248
审稿时长
8 weeks
期刊介绍: Hepatology Communications is a peer-reviewed, online-only, open access journal for fast dissemination of high quality basic, translational, and clinical research in hepatology. Hepatology Communications maintains high standard and rigorous peer review. Because of its open access nature, authors retain the copyright to their works, all articles are immediately available and free to read and share, and it is fully compliant with funder and institutional mandates. The journal is committed to fast publication and author satisfaction. ​
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信