Structure-function studies of a nucleoplasmin isoform from Plasmodium falciparum.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ketul Saharan, Somanath Baral, Surajit Gandhi, Ajit Kumar Singh, Sourav Ghosh, Rahul Das, Viswanathan Arun Nagaraj, Dileep Vasudevan
{"title":"Structure-function studies of a nucleoplasmin isoform from Plasmodium falciparum.","authors":"Ketul Saharan, Somanath Baral, Surajit Gandhi, Ajit Kumar Singh, Sourav Ghosh, Rahul Das, Viswanathan Arun Nagaraj, Dileep Vasudevan","doi":"10.1016/j.jbc.2025.108379","DOIUrl":null,"url":null,"abstract":"<p><p>An organized regulation of gene expression and DNA replication is vital for the progression of the complex life cycle of Plasmodium falciparum (Pf), involving multiple hosts and various stages. These attributes rely on the dynamic architecture of chromatin governed by several factors, including histone chaperones. Nucleoplasmin class of histone chaperones perform histone chaperoning function and participate in various developmental processes in eukaryotes. Here, our crystal structure confirmed that Pf indeed possesses a nucleoplasmin isoform (PfNPM), and the N-terminal core domain (NTD) adopts the characteristic pentameric doughnut conformation. Furthermore, PfNPM exists as a pentamer in solution, and the N-terminal core domain exhibits thermal and chemical stability. PfNPM interacts individually with assembled H2A/H2B and H3/H4 with an equimolar stoichiometry, wherein the acidic tracts of PfNPM were found to be necessary for these interactions. Further, H3/H4 displays a higher binding affinity for PfNPM than H2A/H2B, potentially due to stronger electrostatic interactions. The interaction studies also suggested that H2A/H2B and H3/H4 might share the same binding site on the PfNPM distal face, wherein H3/H4 could substitute H2A/H2B due to a higher binding affinity. Intriguingly, PfNPM neither demonstrated direct interaction with the nucleosome core particles nor displayed nucleosome assembly function, suggesting it may not be directly associated with histone deposition on the parasite genomic DNA. Furthermore, our immunofluorescence results suggested that PfNPM predominantly localizes in the nucleus and exhibits expression only in the early blood stages, such as ring and trophozoite. Altogether, we provide the first report on the structural and functional characterization of PfNPM.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108379"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108379","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An organized regulation of gene expression and DNA replication is vital for the progression of the complex life cycle of Plasmodium falciparum (Pf), involving multiple hosts and various stages. These attributes rely on the dynamic architecture of chromatin governed by several factors, including histone chaperones. Nucleoplasmin class of histone chaperones perform histone chaperoning function and participate in various developmental processes in eukaryotes. Here, our crystal structure confirmed that Pf indeed possesses a nucleoplasmin isoform (PfNPM), and the N-terminal core domain (NTD) adopts the characteristic pentameric doughnut conformation. Furthermore, PfNPM exists as a pentamer in solution, and the N-terminal core domain exhibits thermal and chemical stability. PfNPM interacts individually with assembled H2A/H2B and H3/H4 with an equimolar stoichiometry, wherein the acidic tracts of PfNPM were found to be necessary for these interactions. Further, H3/H4 displays a higher binding affinity for PfNPM than H2A/H2B, potentially due to stronger electrostatic interactions. The interaction studies also suggested that H2A/H2B and H3/H4 might share the same binding site on the PfNPM distal face, wherein H3/H4 could substitute H2A/H2B due to a higher binding affinity. Intriguingly, PfNPM neither demonstrated direct interaction with the nucleosome core particles nor displayed nucleosome assembly function, suggesting it may not be directly associated with histone deposition on the parasite genomic DNA. Furthermore, our immunofluorescence results suggested that PfNPM predominantly localizes in the nucleus and exhibits expression only in the early blood stages, such as ring and trophozoite. Altogether, we provide the first report on the structural and functional characterization of PfNPM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信