Enhancing autophagy mitigates LPS-induced neuroinflammation by inhibiting microglial M1 polarization and neuronophagocytosis.

IF 4.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Cellular Neuroscience Pub Date : 2025-02-20 eCollection Date: 2025-01-01 DOI:10.3389/fncel.2025.1546848
Jingjing Guo, Yun Li, Kun Ma, Guohai Su
{"title":"Enhancing autophagy mitigates LPS-induced neuroinflammation by inhibiting microglial M1 polarization and neuronophagocytosis.","authors":"Jingjing Guo, Yun Li, Kun Ma, Guohai Su","doi":"10.3389/fncel.2025.1546848","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autophagy, a regulator of inflammation, has been implicated in various central nervous system pathologies. Despite this, the role and mechanisms of autophagy in lipopolysaccharide (LPS)-induced neuroinflammation are not clear. This study investigated whether autophagy can play a neuroprotective role in LPS-induced neuroinflammation.</p><p><strong>Methods: </strong>Primary microglial cells and male C57BL/6 J mice were treated with LPS, autophagy inhibitors (3-methyladenine, 3-MA), or autophagy activators (rapamycin). Cell viability, NF-κB pathway activation, pro-inflammatory cytokine expression, M1 polarization, autophagy markers, and neuronal damage were evaluated via various techniques including CCK-8 assay, Western blot analysis, ELISA, immunohistochemistry, and histological staining.</p><p><strong>Results: </strong>LPS (1 μg/mL) effectively inhibited cell viability, stimulated the expression of IκB-α and NF-κB, and simultaneously suppressed autophagy protein expression. The pro-inflammatory cytokines IL-1β and IL-6 showed a significant increase. Contrary to the effect of 3-MA, the rapamycin treatment inhibited the polarization of microglia cells to the M1 type in the various groups of microglia cells after LPS stimulation. This was evidenced by decreased expression of cytokines IL-1β, IL-6, and CD86, and increased expression of Arg-1, IL-10, and CD206. <i>In vivo</i> experiments found that mice with injections of LPS and 3-MA in the lateral ventricle showed significantly increased expression of IκB-α and NF-κB in brain tissues, elevated levels of pro-inflammatory cytokines, decreased autophagy levels, and increased necrotic neurons. There was increased aggregation of microglia cells and increased neuronophagocytosis. Conversely, mice injected with rapamycin showed enhanced neuronal cell autophagy, decreased expression of pro-inflammatory cytokines and apoptosis, and reduced neuronophagocytosis.</p><p><strong>Conclusion: </strong>Enhancing autophagy can effectively mitigate LPS-induced neuroinflammation by inhibiting microglial M1 polarization and neuronophagocytosis, thereby protecting neuronal integrity. These findings suggest potential therapeutic strategies targeting autophagy in neuroinflammatory conditions.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1546848"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2025.1546848","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Autophagy, a regulator of inflammation, has been implicated in various central nervous system pathologies. Despite this, the role and mechanisms of autophagy in lipopolysaccharide (LPS)-induced neuroinflammation are not clear. This study investigated whether autophagy can play a neuroprotective role in LPS-induced neuroinflammation.

Methods: Primary microglial cells and male C57BL/6 J mice were treated with LPS, autophagy inhibitors (3-methyladenine, 3-MA), or autophagy activators (rapamycin). Cell viability, NF-κB pathway activation, pro-inflammatory cytokine expression, M1 polarization, autophagy markers, and neuronal damage were evaluated via various techniques including CCK-8 assay, Western blot analysis, ELISA, immunohistochemistry, and histological staining.

Results: LPS (1 μg/mL) effectively inhibited cell viability, stimulated the expression of IκB-α and NF-κB, and simultaneously suppressed autophagy protein expression. The pro-inflammatory cytokines IL-1β and IL-6 showed a significant increase. Contrary to the effect of 3-MA, the rapamycin treatment inhibited the polarization of microglia cells to the M1 type in the various groups of microglia cells after LPS stimulation. This was evidenced by decreased expression of cytokines IL-1β, IL-6, and CD86, and increased expression of Arg-1, IL-10, and CD206. In vivo experiments found that mice with injections of LPS and 3-MA in the lateral ventricle showed significantly increased expression of IκB-α and NF-κB in brain tissues, elevated levels of pro-inflammatory cytokines, decreased autophagy levels, and increased necrotic neurons. There was increased aggregation of microglia cells and increased neuronophagocytosis. Conversely, mice injected with rapamycin showed enhanced neuronal cell autophagy, decreased expression of pro-inflammatory cytokines and apoptosis, and reduced neuronophagocytosis.

Conclusion: Enhancing autophagy can effectively mitigate LPS-induced neuroinflammation by inhibiting microglial M1 polarization and neuronophagocytosis, thereby protecting neuronal integrity. These findings suggest potential therapeutic strategies targeting autophagy in neuroinflammatory conditions.

增强自噬可通过抑制小胶质细胞M1极化和神经元吞噬作用减轻lps诱导的神经炎症。
背景:自噬是炎症的调节因子,与多种中枢神经系统病变有关。尽管如此,自噬在脂多糖(LPS)诱导的神经炎症中的作用和机制尚不清楚。本研究探讨自噬是否在lps诱导的神经炎症中发挥神经保护作用。方法:用LPS、自噬抑制剂(3-甲基腺嘌呤,3-MA)或自噬激活剂(雷帕霉素)处理原代小胶质细胞和雄性C57BL/6 J小鼠。细胞活力、NF-κB通路激活、促炎细胞因子表达、M1极化、自噬标志物和神经元损伤通过CCK-8测定、Western blot分析、ELISA、免疫组织化学和组织学染色等多种技术进行评估。结果:LPS(1 μg/mL)有效抑制细胞活力,刺激i -κB -α和NF-κB的表达,同时抑制自噬蛋白的表达。促炎因子IL-1β和IL-6显著升高。与3-MA的作用相反,雷帕霉素处理抑制了LPS刺激后各组小胶质细胞向M1型极化。细胞因子IL-1β、IL-6和CD86的表达降低,Arg-1、IL-10和CD206的表达增加。体内实验发现,侧脑室注射LPS和3-MA后,小鼠脑组织i - b -α和NF-κB表达显著升高,促炎细胞因子水平升高,自噬水平降低,坏死神经元增多。小胶质细胞聚集增多,神经元吞噬增多。相反,注射雷帕霉素的小鼠神经元细胞自噬增强,促炎细胞因子表达和凋亡减少,神经元自噬功能减少。结论:增强自噬可通过抑制小胶质细胞M1极化和神经元吞噬作用,有效减轻lps诱导的神经炎症,从而保护神经元的完整性。这些发现提示了针对神经炎症的自噬的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
3.80%
发文量
627
审稿时长
6-12 weeks
期刊介绍: Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信