{"title":"Cytometry at the Intersection of Metabolism and Epigenetics in Lymphocyte Dynamics.","authors":"Nicole Vaughn","doi":"10.1002/cyto.a.24919","DOIUrl":null,"url":null,"abstract":"<p><p>Landmark studies at the turn of the century revealed metabolic reprogramming as a driving force for lymphocyte differentiation and function. In addition to metabolic changes, differentiating lymphocytes must remodel their epigenetic landscape to properly rewire their gene expression. Recent discoveries have shown that metabolic shifts can shape the fate of lymphocytes by altering their epigenetic state, bringing together these two areas of inquiry. The ongoing evolution of high-dimensional cytometry has enabled increasingly comprehensive analyses of metabolic and epigenetic landscapes in lymphocytes that transcend the technical limitations of the past. Here, we review recent insights into the interplay between metabolism and epigenetics in lymphocytes and how its dysregulation can lead to immunological dysfunction and disease. We also discuss the latest technical advances in cytometry that have enabled these discoveries and that we anticipate will advance future work in this area.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24919","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Landmark studies at the turn of the century revealed metabolic reprogramming as a driving force for lymphocyte differentiation and function. In addition to metabolic changes, differentiating lymphocytes must remodel their epigenetic landscape to properly rewire their gene expression. Recent discoveries have shown that metabolic shifts can shape the fate of lymphocytes by altering their epigenetic state, bringing together these two areas of inquiry. The ongoing evolution of high-dimensional cytometry has enabled increasingly comprehensive analyses of metabolic and epigenetic landscapes in lymphocytes that transcend the technical limitations of the past. Here, we review recent insights into the interplay between metabolism and epigenetics in lymphocytes and how its dysregulation can lead to immunological dysfunction and disease. We also discuss the latest technical advances in cytometry that have enabled these discoveries and that we anticipate will advance future work in this area.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.