pH induced incongruent-dissolution impacts Al-ferrihydrite transformations and As mobilization.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Shanglin Yu
{"title":"pH induced incongruent-dissolution impacts Al-ferrihydrite transformations and As mobilization.","authors":"Shanglin Yu","doi":"10.1007/s10653-025-02415-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the role of Al and As fate during the transformation process of ferrihydrite influenced by different pH values under oxic conditions. The results indicate that the Al doping greatly enhanced the transformation of ferrihydrite (Fh) to Al-substituted goethite at all acidic or alkaline pH values under oxic conditions by promoting the incongruent dissolution and reprecipitation reactions of Al-substituted ferrihydrite (AlFh). Under acidic conditions, the preferential dissolution of structural Fe (4.73 mg/L) from AlFh occurs, whereas under alkaline conditions, the preferential dissolution of structural Al (1.25 mg/L) takes place. In contrast, under neutral conditions, the low solubility of Fh and AlFh induces the significant particle assembly, with Fe/Al minerals primarily transforming into goethite through oriented aggregation. As predominantly remains in an adsorbed state at all pH values during the transformation of Fh and AlFh, with the highest proportion of adsorbed As (86.9-96.7%) observed under neutral conditions. During the aging process, the adsorbed As gradually transforms into non-extractable As, and the changes in As speciation within Fe/Al minerals are closely coupled with the transformation of AlFh and Fh. Under alkaline and acidic conditions, the proportion of non-extractable As in the transformation products of Fh and AlFh increases by 14.02-19.72% and 12.27-16.28%, respectively, while under neutral conditions, it increases only by 12-13.02%. Therefore, regulating soil pH can partially modify As speciation and mitigate its environmental impact by altering the mineral transformation process. The results of this study facilitate better understanding of the role of Al substitution in the transformation of Fh and the cycling of As in the environment.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 4","pages":"108"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02415-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the role of Al and As fate during the transformation process of ferrihydrite influenced by different pH values under oxic conditions. The results indicate that the Al doping greatly enhanced the transformation of ferrihydrite (Fh) to Al-substituted goethite at all acidic or alkaline pH values under oxic conditions by promoting the incongruent dissolution and reprecipitation reactions of Al-substituted ferrihydrite (AlFh). Under acidic conditions, the preferential dissolution of structural Fe (4.73 mg/L) from AlFh occurs, whereas under alkaline conditions, the preferential dissolution of structural Al (1.25 mg/L) takes place. In contrast, under neutral conditions, the low solubility of Fh and AlFh induces the significant particle assembly, with Fe/Al minerals primarily transforming into goethite through oriented aggregation. As predominantly remains in an adsorbed state at all pH values during the transformation of Fh and AlFh, with the highest proportion of adsorbed As (86.9-96.7%) observed under neutral conditions. During the aging process, the adsorbed As gradually transforms into non-extractable As, and the changes in As speciation within Fe/Al minerals are closely coupled with the transformation of AlFh and Fh. Under alkaline and acidic conditions, the proportion of non-extractable As in the transformation products of Fh and AlFh increases by 14.02-19.72% and 12.27-16.28%, respectively, while under neutral conditions, it increases only by 12-13.02%. Therefore, regulating soil pH can partially modify As speciation and mitigate its environmental impact by altering the mineral transformation process. The results of this study facilitate better understanding of the role of Al substitution in the transformation of Fh and the cycling of As in the environment.

pH诱导的不一致溶解影响al -铁水合体转化和As的动员。
本文研究了在氧化条件下不同pH值对水合铁转化过程中Al和As命运的影响。结果表明:在氧化条件下,在酸性或碱性条件下,Al掺杂通过促进Al取代的水合铁(AlFh)的不一致溶解和再沉淀反应,大大促进了水合铁(Fh)向Al取代针铁矿的转变。在酸性条件下,结构性Fe (4.73 mg/L)优先从AlFh中溶解,而在碱性条件下,结构性Al (1.25 mg/L)优先溶解。相反,在中性条件下,Fh和AlFh的低溶解度诱导了显著的颗粒聚集,Fe/Al矿物主要通过定向聚集转变为针铁矿。在Fh和AlFh转化过程中,As在各pH值下均以吸附态为主,在中性条件下吸附As的比例最高(86.9-96.7%)。在老化过程中,吸附的As逐渐转化为不可提取的As, Fe/Al矿物中As形态的变化与AlFh和Fh的转化密切相关。在碱性和酸性条件下,Fh和AlFh转化产物中不可提取As的比例分别增加了14.02-19.72%和12.27-16.28%,而在中性条件下仅增加了12-13.02%。因此,调节土壤pH值可以通过改变矿物转化过程,部分地改变砷的形态,减轻其对环境的影响。本研究的结果有助于更好地理解Al取代在Fh转化和As在环境中的循环中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信