Continuous Glucose Monitoring in Type 1 Diabetes, Type 2 Diabetes, and Diabetes During Pregnancy: A Systematic Review with Meta-Analysis of Randomized Controlled Trials.

IF 5.7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Evangelos C Rizos, Georgios Markozannes, Nikolaos Charitakis, Panagiotis Filis, Anastasia E Stoimeni, Kirsten Nørgaard, Evangelia E Ntzani, Konstantinos K Tsilidis
{"title":"Continuous Glucose Monitoring in Type 1 Diabetes, Type 2 Diabetes, and Diabetes During Pregnancy: A Systematic Review with Meta-Analysis of Randomized Controlled Trials.","authors":"Evangelos C Rizos, Georgios Markozannes, Nikolaos Charitakis, Panagiotis Filis, Anastasia E Stoimeni, Kirsten Nørgaard, Evangelia E Ntzani, Konstantinos K Tsilidis","doi":"10.1089/dia.2024.0599","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Continuous glucose monitoring (real-time CGM [RT-CGM] and retrospective [professional] CGM [non-RT-CGM]) is an emerging tool to assess glucose levels and variability. We performed a meta-analysis of randomized controlled trials (RCTs) to assess the effect of RT/non-RT-CGM on type 1 (T1D), type 2 (T2D), and diabetes in pregnancy (DiP) compared with self-monitoring of blood glucose (BGM). <b><i>Methods:</i></b> We searched PubMed/EMBASE/Cochrane Central Register of Controlled Trials until October 2024. The coprimary outcomes were the weighted mean change differences (WMCDs and absolute differences) from baseline in glycated hemoglobin (HbA1c) and in time in range (TIR%), time below range (TBR%), and time above range (TAR%). <b><i>Results:</i></b> A total of 64 RCTs were analyzed: (1) RT-CGM/T1D: CGM was superior to BGM for HbA1c reduction (WMCD -0.24, 95% confidence interval [CI]: -0.35; -0.14, <i>I</i><sup>2 </sup>= 71%), decrease in TBR <70 mg/dL (WMCD -2.41, 95% CI: -3.46; -1.35, <i>I</i><sup>2 </sup>= 96%), decrease in TBR < 54 mg/dL (WMCD -1.18 95% CI: -1.9; -0.47, <i>I</i><sup>2 </sup>= 97%), decrease in TAR >180 mg/dL (WMCD -2.99, 95% CI: -5.28; -0.71, <i>I</i><sup>2</sup> = 92%), decrease in TAR >250 mg/dL (WMCD -3.99, 95% CI: -5.76; -2.21, <i>I</i><sup>2 </sup>= 92%), and increase in TIR 70-180 mg/dL (WMCD 5.57, 95% CI: 4.13; 7.01, <i>I</i><sup>2 </sup>= 84%); (2) RT-CGM/T2D: CGM was superior to BGM for HbA1c reduction (WMCD -0.40, 95% CI: -0.55; -0.24, <i>I</i><sup>2 </sup>= 52%), decrease in TAR > 180 mg/dL (WMCD -6.32, 95% CI: -9.87; -2.78, <i>I</i><sup>2 </sup>= 84%), decrease in TAR > 250 mg/dL (WMCD -5.73, 95% CI: -8.96; -2.49, <i>I</i><sup>2 </sup>= 89%), and increase in TIR 70-180 mg/dL (WMCD 5.46, 95% CI: 2.76; 8.16, <i>I</i><sup>2 </sup>= 69%); (3) RT-CGM/DiP: CGM was superior to BGM for TIR 63-140 mg/dL (WMCD: 17.77, 95% CI: 4.17; 31.36, <i>I</i><sup>2 </sup>= 92%). No benefit was shown for HbA1c, TBR < 63 mg/dL, TAR > 140 mg/dL, and most of the maternal and neonatal outcomes of interest; (4) Non-RT CGM: HbA1c significantly decreased with non-RT CGM compared with BGM in T2D (WMCD -0.35, 95% CI: -0.5; -0.2, <i>I</i><sup>2 </sup>= 19%). <b><i>Discussion:</i></b> In T1D and T2D, RT-CGM decreased HbA1c and increased time in target range for glycemia (70-180 mg/dL) while decreasing time spent in hypoglycemia (T1D) and time in hyperglycemia (T1D, T2D).</p>","PeriodicalId":11159,"journal":{"name":"Diabetes technology & therapeutics","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes technology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/dia.2024.0599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Continuous glucose monitoring (real-time CGM [RT-CGM] and retrospective [professional] CGM [non-RT-CGM]) is an emerging tool to assess glucose levels and variability. We performed a meta-analysis of randomized controlled trials (RCTs) to assess the effect of RT/non-RT-CGM on type 1 (T1D), type 2 (T2D), and diabetes in pregnancy (DiP) compared with self-monitoring of blood glucose (BGM). Methods: We searched PubMed/EMBASE/Cochrane Central Register of Controlled Trials until October 2024. The coprimary outcomes were the weighted mean change differences (WMCDs and absolute differences) from baseline in glycated hemoglobin (HbA1c) and in time in range (TIR%), time below range (TBR%), and time above range (TAR%). Results: A total of 64 RCTs were analyzed: (1) RT-CGM/T1D: CGM was superior to BGM for HbA1c reduction (WMCD -0.24, 95% confidence interval [CI]: -0.35; -0.14, I2 = 71%), decrease in TBR <70 mg/dL (WMCD -2.41, 95% CI: -3.46; -1.35, I2 = 96%), decrease in TBR < 54 mg/dL (WMCD -1.18 95% CI: -1.9; -0.47, I2 = 97%), decrease in TAR >180 mg/dL (WMCD -2.99, 95% CI: -5.28; -0.71, I2 = 92%), decrease in TAR >250 mg/dL (WMCD -3.99, 95% CI: -5.76; -2.21, I2 = 92%), and increase in TIR 70-180 mg/dL (WMCD 5.57, 95% CI: 4.13; 7.01, I2 = 84%); (2) RT-CGM/T2D: CGM was superior to BGM for HbA1c reduction (WMCD -0.40, 95% CI: -0.55; -0.24, I2 = 52%), decrease in TAR > 180 mg/dL (WMCD -6.32, 95% CI: -9.87; -2.78, I2 = 84%), decrease in TAR > 250 mg/dL (WMCD -5.73, 95% CI: -8.96; -2.49, I2 = 89%), and increase in TIR 70-180 mg/dL (WMCD 5.46, 95% CI: 2.76; 8.16, I2 = 69%); (3) RT-CGM/DiP: CGM was superior to BGM for TIR 63-140 mg/dL (WMCD: 17.77, 95% CI: 4.17; 31.36, I2 = 92%). No benefit was shown for HbA1c, TBR < 63 mg/dL, TAR > 140 mg/dL, and most of the maternal and neonatal outcomes of interest; (4) Non-RT CGM: HbA1c significantly decreased with non-RT CGM compared with BGM in T2D (WMCD -0.35, 95% CI: -0.5; -0.2, I2 = 19%). Discussion: In T1D and T2D, RT-CGM decreased HbA1c and increased time in target range for glycemia (70-180 mg/dL) while decreasing time spent in hypoglycemia (T1D) and time in hyperglycemia (T1D, T2D).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetes technology & therapeutics
Diabetes technology & therapeutics 医学-内分泌学与代谢
CiteScore
10.60
自引率
14.80%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Diabetes Technology & Therapeutics is the only peer-reviewed journal providing healthcare professionals with information on new devices, drugs, drug delivery systems, and software for managing patients with diabetes. This leading international journal delivers practical information and comprehensive coverage of cutting-edge technologies and therapeutics in the field, and each issue highlights new pharmacological and device developments to optimize patient care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信