Widespread neuronal chaos induced by slow oscillating currents.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0248001
James Scully, Carter Hinsley, David Bloom, Hil G E Meijer, Andrey L Shilnikov
{"title":"Widespread neuronal chaos induced by slow oscillating currents.","authors":"James Scully, Carter Hinsley, David Bloom, Hil G E Meijer, Andrey L Shilnikov","doi":"10.1063/5.0248001","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the origin and onset of chaos in a mathematical model of an individual neuron, arising from the intricate interaction between 3D fast and 2D slow dynamics governing its intrinsic currents. Central to the chaotic dynamics are multiple homoclinic connections and bifurcations of saddle equilibria and periodic orbits. This neural model reveals a rich array of codimension-2 bifurcations, including Shilnikov-Hopf, Belyakov, Bautin, and Bogdanov-Takens points, which play a pivotal role in organizing the complex bifurcation structure of the parameter space. We explore various routes to chaos occurring at the intersections of quiescent, tonic spiking, and bursting activity regimes within this space and provide a thorough bifurcation analysis. Despite the high dimensionality of the model, its fast-slow dynamics allow a reduction to a one-dimensional return map, accurately capturing and explaining the complex dynamics of the neural model. Our approach integrates parameter continuation analysis, newly developed symbolic techniques, and Lyapunov exponents, collectively unveiling the intricate dynamical and bifurcation structures present in the system.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0248001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the origin and onset of chaos in a mathematical model of an individual neuron, arising from the intricate interaction between 3D fast and 2D slow dynamics governing its intrinsic currents. Central to the chaotic dynamics are multiple homoclinic connections and bifurcations of saddle equilibria and periodic orbits. This neural model reveals a rich array of codimension-2 bifurcations, including Shilnikov-Hopf, Belyakov, Bautin, and Bogdanov-Takens points, which play a pivotal role in organizing the complex bifurcation structure of the parameter space. We explore various routes to chaos occurring at the intersections of quiescent, tonic spiking, and bursting activity regimes within this space and provide a thorough bifurcation analysis. Despite the high dimensionality of the model, its fast-slow dynamics allow a reduction to a one-dimensional return map, accurately capturing and explaining the complex dynamics of the neural model. Our approach integrates parameter continuation analysis, newly developed symbolic techniques, and Lyapunov exponents, collectively unveiling the intricate dynamical and bifurcation structures present in the system.

由缓慢振荡电流引起的广泛的神经元混沌。
本文研究了单个神经元的数学模型中混沌的起源和开始,该模型是由控制其固有电流的三维快速和二维慢动态之间的复杂相互作用引起的。混沌动力学的核心是鞍态平衡和周期轨道的多重同斜连接和分岔。该神经模型显示了丰富的协维2分岔序列,包括Shilnikov-Hopf、Belyakov、Bautin和Bogdanov-Takens点,它们在组织参数空间的复杂分岔结构中起着关键作用。我们探索了在这个空间内静态、强直尖峰和爆发活动机制的交叉处发生的各种混乱路线,并提供了彻底的分岔分析。尽管模型的维度很高,但其快慢动态允许将其还原为一维返回图,准确地捕获和解释神经模型的复杂动态。我们的方法集成了参数延拓分析、新开发的符号技术和李亚普诺夫指数,共同揭示了系统中存在的复杂的动力学和分岔结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信