Qi Dong, Yingying Guo, Chen Lv, Lingxue Ren, Bo Chen, Yan Wang, Yang Liu, Mingyue Liu, Kaidong Liu, Nan Zhang, Linzhu Wang, Shaocong Sang, Xin Li, Yang Hui, Haihai Liang, Yunyan Gu
{"title":"Unveiling a novel cancer hallmark by evaluation of neural infiltration in cancer.","authors":"Qi Dong, Yingying Guo, Chen Lv, Lingxue Ren, Bo Chen, Yan Wang, Yang Liu, Mingyue Liu, Kaidong Liu, Nan Zhang, Linzhu Wang, Shaocong Sang, Xin Li, Yang Hui, Haihai Liang, Yunyan Gu","doi":"10.1093/bib/bbaf082","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells acquire necessary functional capabilities for malignancy through the influence of the nervous system. We evaluate the extent of neural infiltration within the tumor microenvironment (TME) across multiple cancer types, highlighting its role as a cancer hallmark. We identify cancer-related neural genes using 40 bulk RNA-seq datasets across 10 cancer types, developing a predictive score for cancer-related neural infiltration (C-Neural score). Cancer samples with elevated C-Neural scores exhibit perineural invasion, recurrence, metastasis, higher stage or grade, or poor prognosis. Epithelial cells show the highest C-Neural scores among all cell types in 55 single-cell RNA sequencing datasets. The epithelial cells with high C-Neural scores (epi-highCNs) characterized by increased copy number variation, reduced cell differentiation, higher epithelial-mesenchymal transition scores, and elevated metabolic level. Epi-highCNs frequently communicate with Schwann cells by FN1 signaling pathway. The co-culture experiment indicates that Schwann cells may facilitate cancer progression through upregulation of VDAC1. Moreover, C-Neural scores positively correlate with the infiltration of antitumor immune cells, indicating potential response for immunotherapy. Melanoma patients with high C-Neural scores may benefit from trametinib. These analyses illuminate the extent of neural influence within TME, suggesting potential role as a cancer hallmark and offering implications for effective therapeutic strategies against cancer.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886572/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer cells acquire necessary functional capabilities for malignancy through the influence of the nervous system. We evaluate the extent of neural infiltration within the tumor microenvironment (TME) across multiple cancer types, highlighting its role as a cancer hallmark. We identify cancer-related neural genes using 40 bulk RNA-seq datasets across 10 cancer types, developing a predictive score for cancer-related neural infiltration (C-Neural score). Cancer samples with elevated C-Neural scores exhibit perineural invasion, recurrence, metastasis, higher stage or grade, or poor prognosis. Epithelial cells show the highest C-Neural scores among all cell types in 55 single-cell RNA sequencing datasets. The epithelial cells with high C-Neural scores (epi-highCNs) characterized by increased copy number variation, reduced cell differentiation, higher epithelial-mesenchymal transition scores, and elevated metabolic level. Epi-highCNs frequently communicate with Schwann cells by FN1 signaling pathway. The co-culture experiment indicates that Schwann cells may facilitate cancer progression through upregulation of VDAC1. Moreover, C-Neural scores positively correlate with the infiltration of antitumor immune cells, indicating potential response for immunotherapy. Melanoma patients with high C-Neural scores may benefit from trametinib. These analyses illuminate the extent of neural influence within TME, suggesting potential role as a cancer hallmark and offering implications for effective therapeutic strategies against cancer.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.