Development and evaluation of a predictive model of upper gastrointestinal bleeding in liver cirrhosis.

IF 2.5 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Jin Peng, Huiru Jin, Ningxin Zhang, Shiqiu Zheng, Chengxiao Yu, Jianzhong Yu, Longfeng Jiang
{"title":"Development and evaluation of a predictive model of upper gastrointestinal bleeding in liver cirrhosis.","authors":"Jin Peng, Huiru Jin, Ningxin Zhang, Shiqiu Zheng, Chengxiao Yu, Jianzhong Yu, Longfeng Jiang","doi":"10.1186/s12876-025-03677-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Upper gastrointestinal bleeding (UGIB) is a prevalent and severe complication of cirrhosis, often resulting from esophagogastric variceal bleeding (EVB). This condition poses significant life-threatening risks. Once bleeding occurs, the risk of recurrent episodes substantially increases, further compromising liver function and worsening patient outcomes. This study aims to identify risk factors for UGIB in cirrhotic patients using clinical examination data and to develop a non-invasive predictive model to improve diagnostic precision and efficiency.</p><p><strong>Methods: </strong>Based on the inclusion and exclusion criteria, the study included 140 cirrhotic patients hospitalized at the First Affiliated Hospital of Nanjing Medical University between June 2022 and May 2023, who experienced UGIB within six months after discharge. These patients were compared with 151 cirrhotic patients hospitalized at the same hospital during the same period, who were discharged within six months without experiencing UGIB. General characteristics of the patients during hospitalisation, laboratory parameters on admission, and liver and spleen stiffness were retrospectively collected, and a retrospective case-control study was conducted. All patients were randomly assigned to the training and validation sets in a ratio of 7:3. Independent factors associated with UGIB were identified by univariate analysis, multivariate logistic regression analysis, and stepwise regression analysis, on the basis of which a predictive model was developed. The model's performance was assessed via receiver operating characteristic (ROC) curve and decision curve analysis (DCA) and was compared with established prognostic models, including the Child-Pugh and MELD scores.</p><p><strong>Results: </strong>The study analyzed 291 patients with cirrhosis, of whom 208 were allocated to the training set and 83 to the validation set. Independent predictors were identified, and predictive models were constructed using multivariate logistic regression analysis, and stepwise regression analysis in the training set, followed by validation in the validation set. The stepwise regression analysis identified ascites, spleen stiffness, albumin, fibrinogen, total cholesterol, and total bilirubin as independent predictors of UGIB (P < 0.05). These variables were incorporated into the predictive model. The area under the curve (AUC) for UGIB prediction was 0.956 in the training set and 0.909 in the validation set, demonstrating strong predictive performance. Furthermore, comparative analysis using ROC and DCA demonstrated that the developed model outperformed established scoring systems, such as the Child-Pugh score and the MELD score.</p><p><strong>Conclusion: </strong>Ascites, spleen stiffness, albumin, fibrinogen, total cholesterol and total bilirubin as independent predictors of UGIB in cirrhotic patients.</p>","PeriodicalId":9129,"journal":{"name":"BMC Gastroenterology","volume":"25 1","pages":"142"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12876-025-03677-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Upper gastrointestinal bleeding (UGIB) is a prevalent and severe complication of cirrhosis, often resulting from esophagogastric variceal bleeding (EVB). This condition poses significant life-threatening risks. Once bleeding occurs, the risk of recurrent episodes substantially increases, further compromising liver function and worsening patient outcomes. This study aims to identify risk factors for UGIB in cirrhotic patients using clinical examination data and to develop a non-invasive predictive model to improve diagnostic precision and efficiency.

Methods: Based on the inclusion and exclusion criteria, the study included 140 cirrhotic patients hospitalized at the First Affiliated Hospital of Nanjing Medical University between June 2022 and May 2023, who experienced UGIB within six months after discharge. These patients were compared with 151 cirrhotic patients hospitalized at the same hospital during the same period, who were discharged within six months without experiencing UGIB. General characteristics of the patients during hospitalisation, laboratory parameters on admission, and liver and spleen stiffness were retrospectively collected, and a retrospective case-control study was conducted. All patients were randomly assigned to the training and validation sets in a ratio of 7:3. Independent factors associated with UGIB were identified by univariate analysis, multivariate logistic regression analysis, and stepwise regression analysis, on the basis of which a predictive model was developed. The model's performance was assessed via receiver operating characteristic (ROC) curve and decision curve analysis (DCA) and was compared with established prognostic models, including the Child-Pugh and MELD scores.

Results: The study analyzed 291 patients with cirrhosis, of whom 208 were allocated to the training set and 83 to the validation set. Independent predictors were identified, and predictive models were constructed using multivariate logistic regression analysis, and stepwise regression analysis in the training set, followed by validation in the validation set. The stepwise regression analysis identified ascites, spleen stiffness, albumin, fibrinogen, total cholesterol, and total bilirubin as independent predictors of UGIB (P < 0.05). These variables were incorporated into the predictive model. The area under the curve (AUC) for UGIB prediction was 0.956 in the training set and 0.909 in the validation set, demonstrating strong predictive performance. Furthermore, comparative analysis using ROC and DCA demonstrated that the developed model outperformed established scoring systems, such as the Child-Pugh score and the MELD score.

Conclusion: Ascites, spleen stiffness, albumin, fibrinogen, total cholesterol and total bilirubin as independent predictors of UGIB in cirrhotic patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Gastroenterology
BMC Gastroenterology 医学-胃肠肝病学
CiteScore
4.20
自引率
0.00%
发文量
465
审稿时长
6 months
期刊介绍: BMC Gastroenterology is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of gastrointestinal and hepatobiliary disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信