TRain: T-cell receptor automated immunoinformatics.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Austin Seamann, Maia Bennett-Boehm, Ryan Ehrlich, Anna Gil, Liisa Selin, Dario Ghersi
{"title":"TRain: T-cell receptor automated immunoinformatics.","authors":"Austin Seamann, Maia Bennett-Boehm, Ryan Ehrlich, Anna Gil, Liisa Selin, Dario Ghersi","doi":"10.1186/s12859-025-06074-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The scarcity of available structural data makes characterizing the binding of T-cell receptors (TCRs) to peptide-Major Histocompatibility Complexes (pMHCs) very challenging. The recent surge in sequencing data makes TCRs an ideal target for protein structure modeling. Through these 3D models, researchers can potentially identify key motifs on the TCR's binding regions. Furthermore, computational methods can be employed to pair a TCR structure with a pMHC, leading to predictions of docked TCRpMHC structures. However, going from sequence to predicted 3D TCRpMHC complexes requires a non-trivial amount of steps and specialized immunoinformatics expertise.</p><p><strong>Results: </strong>We developed a Python tool named TRain (T-cell Receptor Automated ImmunoiNformatics) to streamline this process by: (1) converting single-cell sequencing data into full TCR amino acid sequences; (2) efficiently submitting TCR amino acid sequences to existing TCR-specific modeling pipelines; (3) pairing modeled TCR structures with existing crystal structures of pMHC complexes in a non-biased manner before docking; (3) automating the preparation and submission process of TCRs and pMHCs for docking using the RosettaDock tool; and (4) providing scripts to analyze the predicted TCRpMHC interface. We illustrate the basic functionality of TRain with a case study, while further information can be found in a dedicated manual.</p><p><strong>Conclusions: </strong>We introduced an open-source tool that streamlines going from full TCR sequence information to predicted 3D TCRpMHC complexes, using well-established tools. Analyzing these predicted complexes can provide deeper insights into the binding properties of TCRs, and can help shed light on one of the key steps in adaptive immune responses.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"76"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06074-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The scarcity of available structural data makes characterizing the binding of T-cell receptors (TCRs) to peptide-Major Histocompatibility Complexes (pMHCs) very challenging. The recent surge in sequencing data makes TCRs an ideal target for protein structure modeling. Through these 3D models, researchers can potentially identify key motifs on the TCR's binding regions. Furthermore, computational methods can be employed to pair a TCR structure with a pMHC, leading to predictions of docked TCRpMHC structures. However, going from sequence to predicted 3D TCRpMHC complexes requires a non-trivial amount of steps and specialized immunoinformatics expertise.

Results: We developed a Python tool named TRain (T-cell Receptor Automated ImmunoiNformatics) to streamline this process by: (1) converting single-cell sequencing data into full TCR amino acid sequences; (2) efficiently submitting TCR amino acid sequences to existing TCR-specific modeling pipelines; (3) pairing modeled TCR structures with existing crystal structures of pMHC complexes in a non-biased manner before docking; (3) automating the preparation and submission process of TCRs and pMHCs for docking using the RosettaDock tool; and (4) providing scripts to analyze the predicted TCRpMHC interface. We illustrate the basic functionality of TRain with a case study, while further information can be found in a dedicated manual.

Conclusions: We introduced an open-source tool that streamlines going from full TCR sequence information to predicted 3D TCRpMHC complexes, using well-established tools. Analyzing these predicted complexes can provide deeper insights into the binding properties of TCRs, and can help shed light on one of the key steps in adaptive immune responses.

背景:现有结构数据的稀缺性使得表征 T 细胞受体(TCR)与肽-主要组织相容性复合物(pMHC)的结合非常具有挑战性。最近测序数据的激增使 TCR 成为蛋白质结构建模的理想目标。通过这些三维模型,研究人员有可能确定 TCR 结合区的关键基序。此外,还可以利用计算方法将 TCR 结构与 pMHC 配对,从而预测对接的 TCRpMHC 结构。然而,从序列到预测的三维 TCRpMHC 复合物需要大量的步骤和专业的免疫信息学知识:我们开发了一个名为 TRain(Tell Receptor Automated ImmunoiNformatics)的 Python 工具,通过以下方法简化这一过程:(1) 将单细胞测序数据转换为完整的 TCR 氨基酸序列;(2) 将 TCR 氨基酸序列高效地提交给现有的 TCR 特异性建模管道;(3) 在对接之前以无偏见的方式将建模的 TCR 结构与现有的 pMHC 复合物晶体结构配对;(3) 使用 RosettaDock 工具自动准备和提交 TCR 和 pMHC 的对接过程;(4) 提供分析预测的 TCRpMHC 接口的脚本。我们通过一个案例研究说明了 TRain 的基本功能,更多信息可参见专用手册:我们介绍了一种开源工具,它利用成熟的工具简化了从完整 TCR 序列信息到预测三维 TCRpMHC 复合物的过程。分析这些预测的复合物可以深入了解 TCR 的结合特性,有助于揭示适应性免疫反应的关键步骤之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信