A Single-Cell Transcriptome Atlas Characterizes the Immune Landscape of Human Testes During Aging.

IF 8 1区 医学 Q1 CELL BIOLOGY
Aging Cell Pub Date : 2025-03-06 DOI:10.1111/acel.70032
Qiaoling Jiang, Lina Cui, Xichen Nie, Hui Cai, Wenxiu Zhang, Xiaojian Lu, Yifei Guo, James M Hotaling, Bradley R Cairns, Xiaoyan Wang, Jingtao Guo
{"title":"A Single-Cell Transcriptome Atlas Characterizes the Immune Landscape of Human Testes During Aging.","authors":"Qiaoling Jiang, Lina Cui, Xichen Nie, Hui Cai, Wenxiu Zhang, Xiaojian Lu, Yifei Guo, James M Hotaling, Bradley R Cairns, Xiaoyan Wang, Jingtao Guo","doi":"10.1111/acel.70032","DOIUrl":null,"url":null,"abstract":"<p><p>Aging disrupts immune regulation, affecting tissue function and increasing vulnerability to various diseases. However, the effects of aging on immune cells within human testes are not well understood. In this study, we utilized single-cell RNA sequencing to profile immune cells from 33 human testis samples from individuals aged 21 to 69. Our analysis revealed key immune cell types, including CD8<sup>+</sup> T cells, monocytes, cDC2 cells, and various macrophage subtypes within the testes. We observed an age-related change in monocytes and MRC1<sup>hi</sup> tissue-resident macrophage (TRM), a pattern consistent in both human and mouse testes. Individuals aged 40 and older showed notable shifts in pathways related to phagocytosis, cytokine signaling, and antigen presentation. Monocytes also exhibited pro-inflammatory characteristics, potentially contributing to the low-grade inflammation commonly associated with aging. Together, these findings provide insights into age-related immune cell alterations in human testes and uncover molecular mechanisms underlying these shifts, offering a valuable resource for understanding immune aging in the reproductive system.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70032"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging disrupts immune regulation, affecting tissue function and increasing vulnerability to various diseases. However, the effects of aging on immune cells within human testes are not well understood. In this study, we utilized single-cell RNA sequencing to profile immune cells from 33 human testis samples from individuals aged 21 to 69. Our analysis revealed key immune cell types, including CD8+ T cells, monocytes, cDC2 cells, and various macrophage subtypes within the testes. We observed an age-related change in monocytes and MRC1hi tissue-resident macrophage (TRM), a pattern consistent in both human and mouse testes. Individuals aged 40 and older showed notable shifts in pathways related to phagocytosis, cytokine signaling, and antigen presentation. Monocytes also exhibited pro-inflammatory characteristics, potentially contributing to the low-grade inflammation commonly associated with aging. Together, these findings provide insights into age-related immune cell alterations in human testes and uncover molecular mechanisms underlying these shifts, offering a valuable resource for understanding immune aging in the reproductive system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信