Application of in silico methods to predict the acute toxicity of bicyclic organophosphorus compounds as potential chemical weapon.

IF 4.8 2区 医学 Q1 TOXICOLOGY
Maciej Noga, Kamil Jurowski
{"title":"Application of in silico methods to predict the acute toxicity of bicyclic organophosphorus compounds as potential chemical weapon.","authors":"Maciej Noga, Kamil Jurowski","doi":"10.1007/s00204-025-04000-8","DOIUrl":null,"url":null,"abstract":"<p><p>Bicyclic organophosphorus compounds (BOPCs), including flame retardants and plasticisers, are widely used in industrial applications because of their thermal stability and resistance to degradation. However, their unique structural properties and mechanisms of toxicity raise concerns regarding their potential misuse. Unlike classical organophosphorus compounds that inhibit acetylcholinesterase, BOPCs exert toxicity by antagonising gamma-aminobutyric acid receptors, resulting in severe neurotoxic effects, including convulsions and seizures. This underscores the urgent need to prioritise predictive toxicity studies on these compounds as part of a national defence strategy. The present study represents the first extensive application of in silico toxicological approaches to investigate the acute toxicity of a BOPC dataset (n = 18) utilising advanced in silico tools, such as QSAR models and probabilistic software/platforms, to predict acute oral toxicity in rats. All the investigated BOPCs are highly acutely toxic, judging from LD<sub>50</sub> values ranging for humans between < 1 mg and > 1.000 mg/kg bw, depending on the applied model. Noticeable variation between model predictions reminds us that present in silico approaches have significant limitations, at least when addressing chemically complex compounds, such as the BOPC class. This calls for wet-laboratory experimentation. Major toxicophoric groups, such as phosphate and phosphorothione moieties, have been identified as significant contributors to their toxicity. This study considers the need for high-level computational tools, well-founded experimental validation, targeted antidotes, and regulatory measures to reduce the risks from BOPCs and improve public health protection and chemical safety.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04000-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bicyclic organophosphorus compounds (BOPCs), including flame retardants and plasticisers, are widely used in industrial applications because of their thermal stability and resistance to degradation. However, their unique structural properties and mechanisms of toxicity raise concerns regarding their potential misuse. Unlike classical organophosphorus compounds that inhibit acetylcholinesterase, BOPCs exert toxicity by antagonising gamma-aminobutyric acid receptors, resulting in severe neurotoxic effects, including convulsions and seizures. This underscores the urgent need to prioritise predictive toxicity studies on these compounds as part of a national defence strategy. The present study represents the first extensive application of in silico toxicological approaches to investigate the acute toxicity of a BOPC dataset (n = 18) utilising advanced in silico tools, such as QSAR models and probabilistic software/platforms, to predict acute oral toxicity in rats. All the investigated BOPCs are highly acutely toxic, judging from LD50 values ranging for humans between < 1 mg and > 1.000 mg/kg bw, depending on the applied model. Noticeable variation between model predictions reminds us that present in silico approaches have significant limitations, at least when addressing chemically complex compounds, such as the BOPC class. This calls for wet-laboratory experimentation. Major toxicophoric groups, such as phosphate and phosphorothione moieties, have been identified as significant contributors to their toxicity. This study considers the need for high-level computational tools, well-founded experimental validation, targeted antidotes, and regulatory measures to reduce the risks from BOPCs and improve public health protection and chemical safety.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信