Nickel-Dithiolene Cofactors as Electron Donors and Acceptors in Protein Hosts.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Georgia Polycarpou, Spiros S Skourtis
{"title":"Nickel-Dithiolene Cofactors as Electron Donors and Acceptors in Protein Hosts.","authors":"Georgia Polycarpou, Spiros S Skourtis","doi":"10.1021/acs.jpcb.4c08264","DOIUrl":null,"url":null,"abstract":"<p><p>Metal dithiolene compounds are attracting considerable attention in the field of molecular electronics, particularly as constituents of materials with high charge-carrier mobilities. Recent experiments on cable bacteria that perform centimeter-scale charge transport suggest that Ni-bis(dithiolene) cofactors are important components of the bacterial conductive network. Further, current-voltage experiments of cable-bacteria-conductive sheaths have measured high conductivity values as compared to other electron-transfer bacteria. An important question is how the Ni-bis(dithiolene) structures participating as electron donors/acceptors contribute to the high conductivity. Currently, the protein and cofactor structures of these bacterial networks are largely unknown. Given this limitation, in this work, we explore the more general question of how Ni-bis(dithiolene) molecules would perform as electron donor and acceptor centers in protein-mediated charge transfer. Our aim is to deduce order-of-magnitude higher bounds for charge-transfer rates in such systems as a function of donor-acceptor distance, protein-bridge (amino acid) sequence, cofactor size, and redox state. These bounds are useful for predicting charge-transfer mechanisms and estimating rates in the absence of detailed structural information on protein wires that may use Ni-bis(dithiolene) redox cofactors. Our analysis is also relevant to the design of artificial Ni-bis(dithiolene) protein wires.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08264","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal dithiolene compounds are attracting considerable attention in the field of molecular electronics, particularly as constituents of materials with high charge-carrier mobilities. Recent experiments on cable bacteria that perform centimeter-scale charge transport suggest that Ni-bis(dithiolene) cofactors are important components of the bacterial conductive network. Further, current-voltage experiments of cable-bacteria-conductive sheaths have measured high conductivity values as compared to other electron-transfer bacteria. An important question is how the Ni-bis(dithiolene) structures participating as electron donors/acceptors contribute to the high conductivity. Currently, the protein and cofactor structures of these bacterial networks are largely unknown. Given this limitation, in this work, we explore the more general question of how Ni-bis(dithiolene) molecules would perform as electron donor and acceptor centers in protein-mediated charge transfer. Our aim is to deduce order-of-magnitude higher bounds for charge-transfer rates in such systems as a function of donor-acceptor distance, protein-bridge (amino acid) sequence, cofactor size, and redox state. These bounds are useful for predicting charge-transfer mechanisms and estimating rates in the absence of detailed structural information on protein wires that may use Ni-bis(dithiolene) redox cofactors. Our analysis is also relevant to the design of artificial Ni-bis(dithiolene) protein wires.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信