{"title":"Suppression of Liver Fibrogenesis with Photothermal Sorafenib Nanovesicles via Selectively Inhibiting Glycolysis and Amplification of Active HSCs.","authors":"Xianjing Xiang, Yaru Shao, Li Xiang, Qiangqiang Jiao, Wenhui Zhang, Yuting Qin, Yuping Chen","doi":"10.1021/acs.molpharmaceut.4c01135","DOIUrl":null,"url":null,"abstract":"<p><p>As the major driving factor of hepatic fibrosis, the activated hepatic stellate cells (aHSCs) rely on active glycolysis to support their aberrant proliferation and secretion of the extracellular matrix. Sorafenib (Sor) can combat liver fibrosis by suppressing HIF-1α and glycolysis, but its poor solubility, rapid metabolism, and low bioavailability restrict such a clinical application. Here, Sor was loaded onto polydopamine nanoparticles and then encapsulated by a retinoid-decorated red blood cell membrane, yielding HSC-targeted Sor nanovesicles (PDA/Sor@RMV-VA) with a high Sor-loading capacity and photothermally controlled drug release for antifibrotic treatment. These Sor RMVs not only exhibited a good particle size, dispersity and biocompatibility, prolonged circulation time, enhanced aHSC targetability, and hepatic accumulation both in vitro and in vivo, but also displayed a mild photothermal activity proper for promoting sorafenib release and accumulation in CCl<sub>4</sub>-induced fibrotic mouse livers without incurring phototoxicity. Compared with nontargeting Sor formulations, PDA/Sor@RMV-VA more effectively downregulated HIF-1α and glycolytic enzyme in both cultured aHSCs and fibrotic mice and reversed myofibroblast phenotype and amplification of aHSCs and thus more significantly improved liver damage, inflammation, and fibrosis, all of which could be even further advanced with NIR irradiation. These results fully demonstrate the antifibrotic power and therapeutic potential of PDA/Sor@RMV-VA as an antifibrotic nanomedicine, which would support a new clinical treatment for hepatic fibrosis.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01135","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
As the major driving factor of hepatic fibrosis, the activated hepatic stellate cells (aHSCs) rely on active glycolysis to support their aberrant proliferation and secretion of the extracellular matrix. Sorafenib (Sor) can combat liver fibrosis by suppressing HIF-1α and glycolysis, but its poor solubility, rapid metabolism, and low bioavailability restrict such a clinical application. Here, Sor was loaded onto polydopamine nanoparticles and then encapsulated by a retinoid-decorated red blood cell membrane, yielding HSC-targeted Sor nanovesicles (PDA/Sor@RMV-VA) with a high Sor-loading capacity and photothermally controlled drug release for antifibrotic treatment. These Sor RMVs not only exhibited a good particle size, dispersity and biocompatibility, prolonged circulation time, enhanced aHSC targetability, and hepatic accumulation both in vitro and in vivo, but also displayed a mild photothermal activity proper for promoting sorafenib release and accumulation in CCl4-induced fibrotic mouse livers without incurring phototoxicity. Compared with nontargeting Sor formulations, PDA/Sor@RMV-VA more effectively downregulated HIF-1α and glycolytic enzyme in both cultured aHSCs and fibrotic mice and reversed myofibroblast phenotype and amplification of aHSCs and thus more significantly improved liver damage, inflammation, and fibrosis, all of which could be even further advanced with NIR irradiation. These results fully demonstrate the antifibrotic power and therapeutic potential of PDA/Sor@RMV-VA as an antifibrotic nanomedicine, which would support a new clinical treatment for hepatic fibrosis.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.