Quantum Sensing and Communication via Non-Gaussian States

Andrea Giani;Moe Z. Win;Andrea Conti
{"title":"Quantum Sensing and Communication via Non-Gaussian States","authors":"Andrea Giani;Moe Z. Win;Andrea Conti","doi":"10.1109/JSAIT.2024.3491692","DOIUrl":null,"url":null,"abstract":"Quantum sensing and communication (QSC) is pivotal for developing next-generation networks with unprecedented performance. Many implementations of existing QSC systems employ Gaussian states as they can be easily realized using current technologies. However, Gaussian states lack non-classical properties necessary to unleash the full potential of QSC. This motivates the use of non-Gaussian states, which have non-classical properties beneficial for QSC. This paper establishes a theoretical foundation for QSC employing photon-varied Gaussian states (PVGSs). The PVGSs are non-Gaussian states that can be generated from Gaussian states using current technologies. First, we derive a closed-form expression for the generalized bilinear generating function of ordinary Hermite polynomials and show how it can be used to describe PVGSs. Then, we characterize PVGSs by deriving their Fock representation and their inner product. We also determine equivalence conditions for Gaussian states obtained from arbitrary permutations of rotation, displacement, and squeezing operators. Finally, we explore the use of PVGSs for QSC in several case studies.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"18-33"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750411","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750411/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum sensing and communication (QSC) is pivotal for developing next-generation networks with unprecedented performance. Many implementations of existing QSC systems employ Gaussian states as they can be easily realized using current technologies. However, Gaussian states lack non-classical properties necessary to unleash the full potential of QSC. This motivates the use of non-Gaussian states, which have non-classical properties beneficial for QSC. This paper establishes a theoretical foundation for QSC employing photon-varied Gaussian states (PVGSs). The PVGSs are non-Gaussian states that can be generated from Gaussian states using current technologies. First, we derive a closed-form expression for the generalized bilinear generating function of ordinary Hermite polynomials and show how it can be used to describe PVGSs. Then, we characterize PVGSs by deriving their Fock representation and their inner product. We also determine equivalence conditions for Gaussian states obtained from arbitrary permutations of rotation, displacement, and squeezing operators. Finally, we explore the use of PVGSs for QSC in several case studies.
基于非高斯态的量子传感与通信
量子传感与通信(QSC)对于开发具有前所未有性能的下一代网络至关重要。现有QSC系统的许多实现都采用高斯态,因为它们可以很容易地使用当前技术实现。然而,高斯态缺乏释放量子力学全部潜力所必需的非经典性质。这激发了非高斯态的使用,非高斯态具有有利于QSC的非经典特性。本文为利用光子变高斯态(PVGSs)实现量子量子控制奠定了理论基础。pvgs是非高斯态,可以使用当前技术从高斯态生成。首先,我们推导了一般Hermite多项式的广义双线性生成函数的封闭表达式,并说明了如何用它来描述pvgs。然后,我们通过推导它们的Fock表示和它们的内积来表征pvgs。我们还确定了由旋转、位移和压缩算子的任意排列得到的高斯态的等价条件。最后,我们在几个案例研究中探讨了pvgs在QSC中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信