{"title":"An Adaptive Entire-Space Multi-Scenario Multi-Task Transfer Learning Model for Recommendations","authors":"Qingqing Yi;Jingjing Tang;Xiangyu Zhao;Yujian Zeng;Zengchun Song;Jia Wu","doi":"10.1109/TKDE.2025.3536334","DOIUrl":null,"url":null,"abstract":"Multi-scenario and multi-task recommendation systems efficiently facilitate knowledge transfer across different scenarios and tasks. However, many existing approaches inadequately incorporate personalized information across users and scenarios. Moreover, the conversion rate (CVR) task in multi-task learning often encounters challenges like sample selection bias, resulting from systematic differences between the training and inference sample spaces, and data sparsity due to infrequent clicks. To address these issues, we propose Adaptive Entire-space Multi-scenario Multi-task Transfer Learning model (AEM<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>TL) with four key modules: 1) Scenario-CGC (Scenario-Customized Gate Control), 2) Task-CGC (Task-Customized Gate Control), 3) Personalized Gating Network, and 4) Entire-space Supervised Multi-Task Module. AEM<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>TL employs a multi-gate mechanism to effectively integrate shared and specific information across scenarios and tasks, enhancing prediction adaptability. To further improve task-specific personalization, it incorporates personalized prior features and applies a gating mechanism that dynamically scales the top-layer neural units. A novel post-impression behavior decomposition technique is designed to leverage all impression samples across the entire space, mitigating sample selection bias and data sparsity. Furthermore, an adaptive weighting mechanism dynamically allocates attention to tasks based on their relative importance, ensuring optimal task prioritization. Extensive experiments on one industrial and two real-world public datasets indicate the superiority of AEM<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>TL over state-of-the-art methods.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 4","pages":"1585-1598"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858412/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-scenario and multi-task recommendation systems efficiently facilitate knowledge transfer across different scenarios and tasks. However, many existing approaches inadequately incorporate personalized information across users and scenarios. Moreover, the conversion rate (CVR) task in multi-task learning often encounters challenges like sample selection bias, resulting from systematic differences between the training and inference sample spaces, and data sparsity due to infrequent clicks. To address these issues, we propose Adaptive Entire-space Multi-scenario Multi-task Transfer Learning model (AEM$^{2}$TL) with four key modules: 1) Scenario-CGC (Scenario-Customized Gate Control), 2) Task-CGC (Task-Customized Gate Control), 3) Personalized Gating Network, and 4) Entire-space Supervised Multi-Task Module. AEM$^{2}$TL employs a multi-gate mechanism to effectively integrate shared and specific information across scenarios and tasks, enhancing prediction adaptability. To further improve task-specific personalization, it incorporates personalized prior features and applies a gating mechanism that dynamically scales the top-layer neural units. A novel post-impression behavior decomposition technique is designed to leverage all impression samples across the entire space, mitigating sample selection bias and data sparsity. Furthermore, an adaptive weighting mechanism dynamically allocates attention to tasks based on their relative importance, ensuring optimal task prioritization. Extensive experiments on one industrial and two real-world public datasets indicate the superiority of AEM$^{2}$TL over state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.