Adversarial Conservative Alternating Q-Learning for Credit Card Debt Collection

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenhui Liu;Jiapeng Zhu;Lyu Ni;Jingyu Bi;Zhijian Wu;Jiajie Long;Mengyao Gao;Dingjiang Huang;Shuigeng Zhou
{"title":"Adversarial Conservative Alternating Q-Learning for Credit Card Debt Collection","authors":"Wenhui Liu;Jiapeng Zhu;Lyu Ni;Jingyu Bi;Zhijian Wu;Jiajie Long;Mengyao Gao;Dingjiang Huang;Shuigeng Zhou","doi":"10.1109/TKDE.2025.3528219","DOIUrl":null,"url":null,"abstract":"Debt collection is utilized for risk control after credit card delinquency. The existing rule-based method tends to be myopic and non-adaptive due to the delayed feedback. Reinforcement learning (RL) has an inherent advantage in dealing with such task and can learn policies end-to-end. However, employing RL here remains difficult because of different interaction processes from standard RL and the notorious problem of optimistic estimations in the offline setting. To tackle these challenges, we first propose an Alternating Q-Learning (AQL) framework to adapt debt collection processes to comparable procedures in RL. Based on AQL, we further develop an Adversarial Conservative Alternating Q-Learning (ACAQL) to address the issue of overoptimistic estimations. Specifically, adversarial conservative value regularization is proposed to balance optimism and conservatism on Q-values of out-of-distribution actions. Furthermore, ACAQL utilizes the counterfactual action stitching to mitigate the overestimation by enhancing behavior data. Finally, we evaluate ACAQL on a real-world dataset created from Bank of Shanghai. Offline experimental results show that our approach outperforms state-of-the-art methods and effectively alleviates the optimistic estimation issue. Moreover, we conduct online A/B tests on the bank, and ACAQL achieves at least a <italic>6%</i> improvement of the debt recovery rate, which yields tangible economic benefits.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 4","pages":"1542-1555"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836919/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Debt collection is utilized for risk control after credit card delinquency. The existing rule-based method tends to be myopic and non-adaptive due to the delayed feedback. Reinforcement learning (RL) has an inherent advantage in dealing with such task and can learn policies end-to-end. However, employing RL here remains difficult because of different interaction processes from standard RL and the notorious problem of optimistic estimations in the offline setting. To tackle these challenges, we first propose an Alternating Q-Learning (AQL) framework to adapt debt collection processes to comparable procedures in RL. Based on AQL, we further develop an Adversarial Conservative Alternating Q-Learning (ACAQL) to address the issue of overoptimistic estimations. Specifically, adversarial conservative value regularization is proposed to balance optimism and conservatism on Q-values of out-of-distribution actions. Furthermore, ACAQL utilizes the counterfactual action stitching to mitigate the overestimation by enhancing behavior data. Finally, we evaluate ACAQL on a real-world dataset created from Bank of Shanghai. Offline experimental results show that our approach outperforms state-of-the-art methods and effectively alleviates the optimistic estimation issue. Moreover, we conduct online A/B tests on the bank, and ACAQL achieves at least a 6% improvement of the debt recovery rate, which yields tangible economic benefits.
针对信用卡债务催收的对抗性保守交替 Q-Learning
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信