{"title":"Few-Shot Causal Representation Learning for Out-of-Distribution Generalization on Heterogeneous Graphs","authors":"Pengfei Ding;Yan Wang;Guanfeng Liu;Nan Wang;Xiaofang Zhou","doi":"10.1109/TKDE.2025.3531469","DOIUrl":null,"url":null,"abstract":"To address the issue of label sparsity in heterogeneous graphs (HGs), heterogeneous graph few-shot learning (HGFL) has recently emerged. HGFL aims to extract meta-knowledge from source HGs with rich-labeled data and transfers it to a target HG, facilitating learning new classes with few-labeled training data and improving predictions on unlabeled testing data. Existing methods typically assume the same distribution across the source HG, training data, and testing data. However, in practice, distribution shifts in HGFL are inevitable due to (1) the scarcity of source HGs that match the target HG's distribution, and (2) the unpredictable data generation mechanism of the target HG. Such distribution shifts can degrade the performance of existing methods, leading to a novel problem of out-of-distribution (OOD) generalization in HGFL. To address this challenging problem, we propose COHF, a <underline>C</u>ausal <underline>O</u>OD <underline>H</u>eterogeneous graph <underline>F</u>ew-shot learning model. In COHF, we first adopt a bottom-up data generative perspective to identify the invariance principle for OOD generalization. Then, based on this principle, we design a novel variational autoencoder-based heterogeneous graph neural network (VAE-HGNN) to mitigate the impact of distribution shifts. Finally, we propose a novel meta-learning framework that incorporates VAE-HGNN to effectively transfer meta-knowledge in OOD environments. Extensive experiments on seven real-world datasets have demonstrated the superior performance of COHF over the state-of-the-art methods.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 4","pages":"1804-1818"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10850643/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To address the issue of label sparsity in heterogeneous graphs (HGs), heterogeneous graph few-shot learning (HGFL) has recently emerged. HGFL aims to extract meta-knowledge from source HGs with rich-labeled data and transfers it to a target HG, facilitating learning new classes with few-labeled training data and improving predictions on unlabeled testing data. Existing methods typically assume the same distribution across the source HG, training data, and testing data. However, in practice, distribution shifts in HGFL are inevitable due to (1) the scarcity of source HGs that match the target HG's distribution, and (2) the unpredictable data generation mechanism of the target HG. Such distribution shifts can degrade the performance of existing methods, leading to a novel problem of out-of-distribution (OOD) generalization in HGFL. To address this challenging problem, we propose COHF, a Causal OOD Heterogeneous graph Few-shot learning model. In COHF, we first adopt a bottom-up data generative perspective to identify the invariance principle for OOD generalization. Then, based on this principle, we design a novel variational autoencoder-based heterogeneous graph neural network (VAE-HGNN) to mitigate the impact of distribution shifts. Finally, we propose a novel meta-learning framework that incorporates VAE-HGNN to effectively transfer meta-knowledge in OOD environments. Extensive experiments on seven real-world datasets have demonstrated the superior performance of COHF over the state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.