{"title":"Graph Condensation: A Survey","authors":"Xinyi Gao;Junliang Yu;Tong Chen;Guanhua Ye;Wentao Zhang;Hongzhi Yin","doi":"10.1109/TKDE.2025.3535877","DOIUrl":null,"url":null,"abstract":"The rapid growth of graph data poses significant challenges in storage, transmission, and particularly the training of graph neural networks (GNNs). To address these challenges, graph condensation (GC) has emerged as an innovative solution. GC focuses on synthesizing a compact yet highly representative graph, enabling GNNs trained on it to achieve performance comparable to those trained on the original large graph. The notable efficacy of GC and its broad prospects have garnered significant attention and spurred extensive research. This survey paper provides an up-to-date and systematic overview of GC, organizing existing research into five categories aligned with critical GC evaluation criteria: effectiveness, generalization, efficiency, fairness, and robustness. To facilitate an in-depth and comprehensive understanding of GC, this paper examines various methods under each category and thoroughly discusses two essential components within GC: optimization strategies and condensed graph generation. We also empirically compare and analyze representative GC methods with diverse optimization strategies based on the five proposed GC evaluation criteria. Finally, we explore the applications of GC in various fields, outline the related open-source libraries, and highlight the present challenges and novel insights, with the aim of promoting advancements in future research.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 4","pages":"1819-1837"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857624/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of graph data poses significant challenges in storage, transmission, and particularly the training of graph neural networks (GNNs). To address these challenges, graph condensation (GC) has emerged as an innovative solution. GC focuses on synthesizing a compact yet highly representative graph, enabling GNNs trained on it to achieve performance comparable to those trained on the original large graph. The notable efficacy of GC and its broad prospects have garnered significant attention and spurred extensive research. This survey paper provides an up-to-date and systematic overview of GC, organizing existing research into five categories aligned with critical GC evaluation criteria: effectiveness, generalization, efficiency, fairness, and robustness. To facilitate an in-depth and comprehensive understanding of GC, this paper examines various methods under each category and thoroughly discusses two essential components within GC: optimization strategies and condensed graph generation. We also empirically compare and analyze representative GC methods with diverse optimization strategies based on the five proposed GC evaluation criteria. Finally, we explore the applications of GC in various fields, outline the related open-source libraries, and highlight the present challenges and novel insights, with the aim of promoting advancements in future research.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.