HyperPart: A Hypergraph-Based Abstraction for Deduplicated Storage Systems

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Geyao Cheng;Junxu Xia;Lailong Luo;Haibo Mi;Deke Guo;Richard T. B. Ma
{"title":"HyperPart: A Hypergraph-Based Abstraction for Deduplicated Storage Systems","authors":"Geyao Cheng;Junxu Xia;Lailong Luo;Haibo Mi;Deke Guo;Richard T. B. Ma","doi":"10.1109/TCC.2024.3502464","DOIUrl":null,"url":null,"abstract":"Currently, deduplication techniques are utilized to minimize the space overhead by deleting redundant data blocks across large-scale servers in data centers. However, such a process exacerbates the fragmentation of data blocks, causing more cross-server file retrievals with plummeting retrieval throughput. Some attempts prefer better file retrieval performance by confining all blocks of a file to one single server, resulting in non-trivial space consumption for more replicated blocks across servers. An ideal network storage system, in effect, should take both the deduplication and retrieval performance into account by implementing reasonable assignment of the detected unique blocks. Such a fine-grained assignment requires an accurate and comprehensive abstraction of the files, blocks, and the file-block affiliation relationships. To achieve this, we innovatively design the weighted hypergraph to profile the multivariate data correlations. With this delicate abstraction in place, we propose HyperPart, which elegantly transforms this complex block allocation problem into a hypergraph partition problem. For more general scenarios with dynamic file updates, we further propose a two-phase incremental hypergraph repartition scheme, which mitigates the performance degradation with minimal migration volume. We implement a prototype system of HyperPart, and the experiment results validate that it saves around 50% of the storage space and improves the retrieval throughput by approximately 30% of state-of-the-art methods under the balance constraints.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"46-60"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10758297/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, deduplication techniques are utilized to minimize the space overhead by deleting redundant data blocks across large-scale servers in data centers. However, such a process exacerbates the fragmentation of data blocks, causing more cross-server file retrievals with plummeting retrieval throughput. Some attempts prefer better file retrieval performance by confining all blocks of a file to one single server, resulting in non-trivial space consumption for more replicated blocks across servers. An ideal network storage system, in effect, should take both the deduplication and retrieval performance into account by implementing reasonable assignment of the detected unique blocks. Such a fine-grained assignment requires an accurate and comprehensive abstraction of the files, blocks, and the file-block affiliation relationships. To achieve this, we innovatively design the weighted hypergraph to profile the multivariate data correlations. With this delicate abstraction in place, we propose HyperPart, which elegantly transforms this complex block allocation problem into a hypergraph partition problem. For more general scenarios with dynamic file updates, we further propose a two-phase incremental hypergraph repartition scheme, which mitigates the performance degradation with minimal migration volume. We implement a prototype system of HyperPart, and the experiment results validate that it saves around 50% of the storage space and improves the retrieval throughput by approximately 30% of state-of-the-art methods under the balance constraints.
HyperPart:基于超图的复制存储系统抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信