SROdcn: Scalable and Reconfigurable Optical DCN Architecture for High-Performance Computing

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kassahun Geresu;Huaxi Gu;Xiaoshan Yu;Meaad Fadhel;Hui Tian;Wenting Wei
{"title":"SROdcn: Scalable and Reconfigurable Optical DCN Architecture for High-Performance Computing","authors":"Kassahun Geresu;Huaxi Gu;Xiaoshan Yu;Meaad Fadhel;Hui Tian;Wenting Wei","doi":"10.1109/TCC.2024.3523433","DOIUrl":null,"url":null,"abstract":"Data Center Network (DCN) flexibility is critical for providing adaptive and dynamic bandwidth while optimizing network resources to manage variable traffic patterns generated by heterogeneous applications. To provide flexible bandwidth, this work proposes a machine learning approach with a new Scalable and Reconfigurable Optical DCN (SROdcn) architecture that maintains dynamic and non-uniform network traffic according to the scale of the high-performance optical interconnected DCN. Our main device is the Fiber Optical Switch (FOS), which offers competitive wavelength resolution. We propose a new top-of-rack (ToR) switch that utilizes Wavelength Selective Switches (WSS) to investigate Software-Defined Networking (SDN) with machine learning-enabled flow prediction for reconfigurable optical Data Center Networks (DCNs). Our architecture provides highly scalable and flexible bandwidth allocation. Results from Mininet experimental simulations demonstrate that under the management of an SDN controller, machine learning traffic flow prediction and graph connectivity allow each optical bandwidth to be automatically reconfigured according to variable traffic patterns. The average server-to-server packet delay performance of the reconfigurable SROdcn improves by 42.33% compared to inflexible interconnects. Furthermore, the network performance of flexible SROdcn servers shows up to a 49.67% latency improvement over the Passive Optical Data Center Architecture (PODCA), a 16.87% latency improvement over the optical OPSquare DCN, and up to a 71.13% latency improvement over the fat-tree network. Additionally, our optimized Unsupervised Machine Learning (ML-UnS) method for SROdcn outperforms Supervised Machine Learning (ML-S) and Deep Learning (DL).","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"245-258"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816648/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Data Center Network (DCN) flexibility is critical for providing adaptive and dynamic bandwidth while optimizing network resources to manage variable traffic patterns generated by heterogeneous applications. To provide flexible bandwidth, this work proposes a machine learning approach with a new Scalable and Reconfigurable Optical DCN (SROdcn) architecture that maintains dynamic and non-uniform network traffic according to the scale of the high-performance optical interconnected DCN. Our main device is the Fiber Optical Switch (FOS), which offers competitive wavelength resolution. We propose a new top-of-rack (ToR) switch that utilizes Wavelength Selective Switches (WSS) to investigate Software-Defined Networking (SDN) with machine learning-enabled flow prediction for reconfigurable optical Data Center Networks (DCNs). Our architecture provides highly scalable and flexible bandwidth allocation. Results from Mininet experimental simulations demonstrate that under the management of an SDN controller, machine learning traffic flow prediction and graph connectivity allow each optical bandwidth to be automatically reconfigured according to variable traffic patterns. The average server-to-server packet delay performance of the reconfigurable SROdcn improves by 42.33% compared to inflexible interconnects. Furthermore, the network performance of flexible SROdcn servers shows up to a 49.67% latency improvement over the Passive Optical Data Center Architecture (PODCA), a 16.87% latency improvement over the optical OPSquare DCN, and up to a 71.13% latency improvement over the fat-tree network. Additionally, our optimized Unsupervised Machine Learning (ML-UnS) method for SROdcn outperforms Supervised Machine Learning (ML-S) and Deep Learning (DL).
SROdcn:用于高性能计算的可扩展和可重构光DCN架构
数据中心网络(DCN)的灵活性对于提供自适应动态带宽,同时优化网络资源以管理异构应用产生的可变流量模式至关重要。为了提供灵活的带宽,本研究提出了一种机器学习方法,该方法采用了一种新的可扩展和可重构光 DCN(SROdcn)架构,可根据高性能光互连 DCN 的规模保持动态和非均匀的网络流量。我们的主要设备是光纤交换机(FOS),它能提供具有竞争力的波长分辨率。我们提出了一种新的机架顶部(ToR)交换机,利用波长选择开关(WSS)来研究软件定义网络(SDN),并为可重构的光数据中心网络(DCN)提供机器学习功能的流量预测。我们的架构可提供高度可扩展和灵活的带宽分配。Mininet 实验模拟的结果表明,在 SDN 控制器的管理下,机器学习流量预测和图连接允许根据可变流量模式自动重新配置每个光带宽。与不灵活的互联相比,可重新配置的 SROdcn 的服务器到服务器数据包平均延迟性能提高了 42.33%。此外,与无源光数据中心架构(PODCA)相比,灵活的 SROdcn 服务器的网络性能提高了 49.67% 的延迟,与光学 OPSquare DCN 相比提高了 16.87% 的延迟,与胖树网络相比提高了 71.13% 的延迟。此外,我们针对 SROdcn 优化的无监督机器学习(ML-UnS)方法优于有监督机器学习(ML-S)和深度学习(DL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信