{"title":"Two-Stage Learning Approach for Semantic-Aware Task Scheduling in Container-Based Clouds","authors":"Lilu Zhu;Kai Huang;Yanfeng Hu;Yang Wang","doi":"10.1109/TCC.2024.3520101","DOIUrl":null,"url":null,"abstract":"Container-based task scheduling is critical for ensuring a reliable, flexible and cost-effective cloud computing mode. However, in different business cloud systems, state-of-the-art scheduling models are not as effective as those in the simulated world due to the sparsity issues associated with sample sizes and features. Herein, we propose a novel containerized task scheduling framework (SA2CTS) based on reinforcement learning (RL) that incorporates cross-modal contrastive learning (CL) loss. This framework optimizes the scheduler's understanding of the container-based cloud state in RL by adding a pretraining stage, promoting accurate scheduling action inference. Specifically, we design a two-stage learning pipeline. The initial stage involves pretraining the model on a large collection of aligned image-text pairs to extract fine-grained scheduling affinity features, and the high-level semantic representations of scheduling tasks are learned in the multimodal space. In the second stage, we fine-tune the pretrained model with multisource cluster feedback, i.e., build a mapping from state representations to scheduling actions through the RL paradigm, achieving task-oriented and semantic-aware scheduling. The experimental results obtained on three large-scale production cluster datasets substantiate that the proposed SA2CTS method can provide average convergence efficiency and resource utilization improvements of 17.57% and 10.42%, respectively, over the state-of-the-art RL scheduling methods.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"148-165"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810299/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Container-based task scheduling is critical for ensuring a reliable, flexible and cost-effective cloud computing mode. However, in different business cloud systems, state-of-the-art scheduling models are not as effective as those in the simulated world due to the sparsity issues associated with sample sizes and features. Herein, we propose a novel containerized task scheduling framework (SA2CTS) based on reinforcement learning (RL) that incorporates cross-modal contrastive learning (CL) loss. This framework optimizes the scheduler's understanding of the container-based cloud state in RL by adding a pretraining stage, promoting accurate scheduling action inference. Specifically, we design a two-stage learning pipeline. The initial stage involves pretraining the model on a large collection of aligned image-text pairs to extract fine-grained scheduling affinity features, and the high-level semantic representations of scheduling tasks are learned in the multimodal space. In the second stage, we fine-tune the pretrained model with multisource cluster feedback, i.e., build a mapping from state representations to scheduling actions through the RL paradigm, achieving task-oriented and semantic-aware scheduling. The experimental results obtained on three large-scale production cluster datasets substantiate that the proposed SA2CTS method can provide average convergence efficiency and resource utilization improvements of 17.57% and 10.42%, respectively, over the state-of-the-art RL scheduling methods.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.