Yi Su;Wenhao Fan;Qingcheng Meng;Penghui Chen;Yuan'an Liu
{"title":"Joint Adaptive Aggregation and Resource Allocation for Hierarchical Federated Learning Systems Based on Edge-Cloud Collaboration","authors":"Yi Su;Wenhao Fan;Qingcheng Meng;Penghui Chen;Yuan'an Liu","doi":"10.1109/TCC.2025.3530681","DOIUrl":null,"url":null,"abstract":"Hierarchical federated learning shows excellent potential for communication-computation trade-offs and reliable data privacy protection by introducing edge-cloud collaboration. Considering non-independent and identically distributed data distribution among devices and edges, this article aims to minimize the final loss function under time and energy budget constraints by optimizing the aggregation frequency and resource allocation jointly. Although there is no closed-form expression relating the final loss function to optimization variables, we divide the hierarchical federated learning process into multiple cloud intervals and analyze the convergence bound for each cloud interval. Then, we transform the initial problem into one that can be adaptively optimized in each cloud interval. We propose an adaptive hierarchical federated learning process, termed as AHFLP, where we determine edge and cloud aggregation frequency for each cloud interval based on estimated parameters, and then the CPU frequency of devices and wireless channel bandwidth allocation can be optimized in each edge. Simulations are conducted under different models, datasets and data distributions, and the results demonstrate the superiority of our proposed AHFLP compared with existing schemes.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"369-382"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843309/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical federated learning shows excellent potential for communication-computation trade-offs and reliable data privacy protection by introducing edge-cloud collaboration. Considering non-independent and identically distributed data distribution among devices and edges, this article aims to minimize the final loss function under time and energy budget constraints by optimizing the aggregation frequency and resource allocation jointly. Although there is no closed-form expression relating the final loss function to optimization variables, we divide the hierarchical federated learning process into multiple cloud intervals and analyze the convergence bound for each cloud interval. Then, we transform the initial problem into one that can be adaptively optimized in each cloud interval. We propose an adaptive hierarchical federated learning process, termed as AHFLP, where we determine edge and cloud aggregation frequency for each cloud interval based on estimated parameters, and then the CPU frequency of devices and wireless channel bandwidth allocation can be optimized in each edge. Simulations are conducted under different models, datasets and data distributions, and the results demonstrate the superiority of our proposed AHFLP compared with existing schemes.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.