{"title":"IBNR-RD: Intra-Block Neighborhood Relationship-Based Resemblance Detection for High-Performance Multi-Node Post-Deduplication","authors":"Dewen Zeng;Wenlong Tian;Tingting He;Ruixuan Li;Xuming Ye;Zhiyong Xu","doi":"10.1109/TCC.2024.3514784","DOIUrl":null,"url":null,"abstract":"Post-deduplication in traditional cloud environments primarily focuses on single-node, where delta compression is performed on the same deduplication node located on server side. However, with data explosion, the multi-node post-deduplication, also called global deduplication, has become a hot issue in research communities, which aims to simultaneously execute delta compression on data distributed across all nodes. Simply setting up single-node deduplication systems on multi-node environments would significantly affect storage utilization and incur secondary overhead from file migration. Nevertheless, existing global deduplication solutions suffer from lower data compression ratios and high computational overhead due to their resemblance detection's inherent limitations and overly coarse granularities. Similar blocks typically have high correlations between sub-blocks; inspired by this observation, we propose IBNR (Intra-Block Neighborhood Relationship-Based Resemblance Detection for High-Performance Multi-Node Post-Deduplication), which introduces a novel resemblance detection based on relationships between sub-blocks and determines the ownership of blocks in entry stage to achieve efficient global deduplication. Furthermore, the by-products of IBNR have shown powerful scalability by replacing internal resemblance detection scheme with existing solutions on practical workloads. Experimental results indicate that IBNR outperforms state-of-the-art solutions, achieving an average 1.99× data reduction ratio and varying degrees of improvement across other key metrics.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"118-129"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10787217/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Post-deduplication in traditional cloud environments primarily focuses on single-node, where delta compression is performed on the same deduplication node located on server side. However, with data explosion, the multi-node post-deduplication, also called global deduplication, has become a hot issue in research communities, which aims to simultaneously execute delta compression on data distributed across all nodes. Simply setting up single-node deduplication systems on multi-node environments would significantly affect storage utilization and incur secondary overhead from file migration. Nevertheless, existing global deduplication solutions suffer from lower data compression ratios and high computational overhead due to their resemblance detection's inherent limitations and overly coarse granularities. Similar blocks typically have high correlations between sub-blocks; inspired by this observation, we propose IBNR (Intra-Block Neighborhood Relationship-Based Resemblance Detection for High-Performance Multi-Node Post-Deduplication), which introduces a novel resemblance detection based on relationships between sub-blocks and determines the ownership of blocks in entry stage to achieve efficient global deduplication. Furthermore, the by-products of IBNR have shown powerful scalability by replacing internal resemblance detection scheme with existing solutions on practical workloads. Experimental results indicate that IBNR outperforms state-of-the-art solutions, achieving an average 1.99× data reduction ratio and varying degrees of improvement across other key metrics.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.