Seyed Mohammad Sheikholeslami;Pai Chet Ng;Jamshid Abouei;Konstantinos N. Plataniotis
{"title":"Multi-Modal Federated Learning Over Cell-Free Massive MIMO Systems for Activity Recognition","authors":"Seyed Mohammad Sheikholeslami;Pai Chet Ng;Jamshid Abouei;Konstantinos N. Plataniotis","doi":"10.1109/ACCESS.2025.3548001","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of Multi-modal Federated Learning (MFL) over resource-limited Cell-Free massive MIMO (CF-mMIMO) networks for the application of Human Activity Recognition (HAR). MFL leverages diverse data modalities across various clients, while the CF-mMIMO network ensures consistent service quality, crucial for collaborative training. The primary challenges of MFL are data heterogeneity, which includes statistical and modality heterogeneity that complicate data fusion, client collaboration, and inference with missing data, and system heterogeneity, where devices with dissimilar modalities experience varied processing and communication delays, increasing overall training latency. To tackle these issues, we propose a late-fusion model architecture that allows flexible client participation with any combination of data modalities, and formulate an optimization problem to jointly minimize latency and global loss in MFL. We propose a prioritized device-modality selection scheme that allows flexible participation of devices. Additionally, we employ a modified Particle Swarm Optimization (PSO) algorithm for efficient resource allocation. Extensive experiments validate our framework, demonstrating substantial reductions in training time and significant improvements in model performance, particularly an average improvement of 15% and 23% in test accuracy compared to the other fusion models when missing one and two modalities in the inference phase.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"40844-40858"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909542","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909542/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the problem of Multi-modal Federated Learning (MFL) over resource-limited Cell-Free massive MIMO (CF-mMIMO) networks for the application of Human Activity Recognition (HAR). MFL leverages diverse data modalities across various clients, while the CF-mMIMO network ensures consistent service quality, crucial for collaborative training. The primary challenges of MFL are data heterogeneity, which includes statistical and modality heterogeneity that complicate data fusion, client collaboration, and inference with missing data, and system heterogeneity, where devices with dissimilar modalities experience varied processing and communication delays, increasing overall training latency. To tackle these issues, we propose a late-fusion model architecture that allows flexible client participation with any combination of data modalities, and formulate an optimization problem to jointly minimize latency and global loss in MFL. We propose a prioritized device-modality selection scheme that allows flexible participation of devices. Additionally, we employ a modified Particle Swarm Optimization (PSO) algorithm for efficient resource allocation. Extensive experiments validate our framework, demonstrating substantial reductions in training time and significant improvements in model performance, particularly an average improvement of 15% and 23% in test accuracy compared to the other fusion models when missing one and two modalities in the inference phase.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.