CARL: Cost-Optimized Online Container Placement on VMs Using Adversarial Reinforcement Learning

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Prathamesh Saraf Vinayak;Saswat Subhajyoti Mallick;Lakshmi Jagarlamudi;Anirban Chakraborty;Yogesh Simmhan
{"title":"CARL: Cost-Optimized Online Container Placement on VMs Using Adversarial Reinforcement Learning","authors":"Prathamesh Saraf Vinayak;Saswat Subhajyoti Mallick;Lakshmi Jagarlamudi;Anirban Chakraborty;Yogesh Simmhan","doi":"10.1109/TCC.2025.3528446","DOIUrl":null,"url":null,"abstract":"Containerization has become popular for the deployment of applications on public clouds. Large enterprises may host 100 s of applications on 1000 s containers that are placed onto Virtual Machines (VMs). Such placement decisions happen continuously as applications are updated by DevOps pipelines that deploy the containers. Managing the placement of container resource requests onto the available capacities of VMs needs to be cost-efficient. This is well-studied, and usually modelled as a multi-dimensional Vector Bin-packing Problem (VBP). Many heuristics, and recently machine learning approaches, have been developed to solve this NP-hard problem for real-time decisions. We propose CARL, a novel approach to solve VBP through Adversarial Reinforcement Learning (RL) for cost minimization. It mimics the placement behavior of an offline semi-optimal VBP solver (teacher), while automatically learning a reward function for reducing the VM costs which out-performs the teacher. It requires limited historical container workload traces to train, and is resilient to changes in the workload distribution during inferencing. We extensively evaluate CARL on workloads derived from realistic traces from Google and Alibaba for the placement of 5 k–10 k container requests onto 2 k–8 k VMs, and compare it with classic heuristics and state-of-the-art RL methods. (1) CARL is <i>fast</i>, e.g., making placement decisions at <inline-formula><tex-math>$\\approx 1900$</tex-math></inline-formula> requests/sec onto 8,900 candidate VMs. (2) It is <i>efficient</i>, achieving <inline-formula><tex-math>$\\approx 16\\%$</tex-math></inline-formula> lower VM costs than classic and contemporary RL methods. (3) It is <i>robust</i> to changes in the workload, offering competitive results even when the resource needs or inter-arrival time of the container requests skew from the training workload.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"321-335"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10839070/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Containerization has become popular for the deployment of applications on public clouds. Large enterprises may host 100 s of applications on 1000 s containers that are placed onto Virtual Machines (VMs). Such placement decisions happen continuously as applications are updated by DevOps pipelines that deploy the containers. Managing the placement of container resource requests onto the available capacities of VMs needs to be cost-efficient. This is well-studied, and usually modelled as a multi-dimensional Vector Bin-packing Problem (VBP). Many heuristics, and recently machine learning approaches, have been developed to solve this NP-hard problem for real-time decisions. We propose CARL, a novel approach to solve VBP through Adversarial Reinforcement Learning (RL) for cost minimization. It mimics the placement behavior of an offline semi-optimal VBP solver (teacher), while automatically learning a reward function for reducing the VM costs which out-performs the teacher. It requires limited historical container workload traces to train, and is resilient to changes in the workload distribution during inferencing. We extensively evaluate CARL on workloads derived from realistic traces from Google and Alibaba for the placement of 5 k–10 k container requests onto 2 k–8 k VMs, and compare it with classic heuristics and state-of-the-art RL methods. (1) CARL is fast, e.g., making placement decisions at $\approx 1900$ requests/sec onto 8,900 candidate VMs. (2) It is efficient, achieving $\approx 16\%$ lower VM costs than classic and contemporary RL methods. (3) It is robust to changes in the workload, offering competitive results even when the resource needs or inter-arrival time of the container requests skew from the training workload.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信