{"title":"DASKT: A Dynamic Affect Simulation Method for Knowledge Tracing","authors":"Xinjie Sun;Kai Zhang;Qi Liu;Shuanghong Shen;Fei Wang;Yuxiang Guo;Enhong Chen","doi":"10.1109/TKDE.2025.3526584","DOIUrl":null,"url":null,"abstract":"Knowledge Tracing (KT) predicts future performance by modeling students’ historical interactions, and understanding students’ affective states can enhance the effectiveness of KT, thereby improving the quality of education. Although traditional KT values students’ cognition and learning behaviors, efficient evaluation of students’ affective states and their application in KT still require further exploration due to the non-affect-oriented nature of the data and budget constraints. To address this issue, we propose a computation-driven approach, <bold>D</b>ynamic <bold>A</b>ffect <bold>S</b>imulation <bold>K</b>nowledge <bold>T</b>racing (DASKT), to explore the impact of various student affective states (such as frustration, concentration, boredom, and confusion) on their knowledge states. In this model, we first extract affective factors from students’ non-affect-oriented behavioral data, then use clustering and spatiotemporal sequence modeling to accurately simulate students’ dynamic affect changes when dealing with different problems. Subsequently, we incorporate affect with time-series analysis to improve the model's ability to infer knowledge states over time and space. Extensive experimental results on two public real-world educational datasets show that DASKT can achieve more reasonable knowledge states under the effect of students’ affective states. Moreover, DASKT outperforms the most advanced KT methods in predicting student performance. Our research highlights a promising avenue for future KT studies, focusing on achieving high interpretability and accuracy.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 4","pages":"1714-1727"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10830578/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge Tracing (KT) predicts future performance by modeling students’ historical interactions, and understanding students’ affective states can enhance the effectiveness of KT, thereby improving the quality of education. Although traditional KT values students’ cognition and learning behaviors, efficient evaluation of students’ affective states and their application in KT still require further exploration due to the non-affect-oriented nature of the data and budget constraints. To address this issue, we propose a computation-driven approach, Dynamic Affect Simulation Knowledge Tracing (DASKT), to explore the impact of various student affective states (such as frustration, concentration, boredom, and confusion) on their knowledge states. In this model, we first extract affective factors from students’ non-affect-oriented behavioral data, then use clustering and spatiotemporal sequence modeling to accurately simulate students’ dynamic affect changes when dealing with different problems. Subsequently, we incorporate affect with time-series analysis to improve the model's ability to infer knowledge states over time and space. Extensive experimental results on two public real-world educational datasets show that DASKT can achieve more reasonable knowledge states under the effect of students’ affective states. Moreover, DASKT outperforms the most advanced KT methods in predicting student performance. Our research highlights a promising avenue for future KT studies, focusing on achieving high interpretability and accuracy.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.