Geospatial Mapping of Large-Scale Electric Power Grids: A Residual Graph Convolutional Network-Based Approach with Attention Mechanism

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Razzaqul Ahshan , Md. Shadman Abid , Mohammed Al-Abri
{"title":"Geospatial Mapping of Large-Scale Electric Power Grids: A Residual Graph Convolutional Network-Based Approach with Attention Mechanism","authors":"Razzaqul Ahshan ,&nbsp;Md. Shadman Abid ,&nbsp;Mohammed Al-Abri","doi":"10.1016/j.egyai.2025.100486","DOIUrl":null,"url":null,"abstract":"<div><div>Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure. The application of deep learning techniques in predicting regional energy network architecture utilizing extensive datasets of geographical information systems (GISs) has yet to be thoroughly investigated in previous research works. Moreover, although graph convolutional networks (GCNs) have been proven to be effective in capturing the complex linkages within graph-structured data, the computationally demanding nature of modern energy grids necessitates additional computational contributions. Hence, this research introduces a novel residual GCN with attention mechanism for mapping critical energy infrastructure components in geographic contexts. The proposed model accurately predicts the geographic locations and links of large-scale grid infrastructure, such as poles, electricity service points, and substations. The proposed framework is assessed on the Sultanate of Oman’s regional energy grid and further validated on Nigeria’s electricity transmission network database. The obtained findings showcase the model’s capacity to accurately predict infrastructure components and their spatial relationships. Results show that the proposed method achieves a link-prediction accuracy of 95.88% for the Omani network and 92.98% for the Nigerian dataset. Furthermore, the proposed model achieved <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> values of 0.99 for both datasets in terms of regression. Therefore, the proposed architecture facilitates multifaceted assessment and enhances the capacity to capture the inherent geospatial aspects of large-scale energy distribution networks.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100486"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure. The application of deep learning techniques in predicting regional energy network architecture utilizing extensive datasets of geographical information systems (GISs) has yet to be thoroughly investigated in previous research works. Moreover, although graph convolutional networks (GCNs) have been proven to be effective in capturing the complex linkages within graph-structured data, the computationally demanding nature of modern energy grids necessitates additional computational contributions. Hence, this research introduces a novel residual GCN with attention mechanism for mapping critical energy infrastructure components in geographic contexts. The proposed model accurately predicts the geographic locations and links of large-scale grid infrastructure, such as poles, electricity service points, and substations. The proposed framework is assessed on the Sultanate of Oman’s regional energy grid and further validated on Nigeria’s electricity transmission network database. The obtained findings showcase the model’s capacity to accurately predict infrastructure components and their spatial relationships. Results show that the proposed method achieves a link-prediction accuracy of 95.88% for the Omani network and 92.98% for the Nigerian dataset. Furthermore, the proposed model achieved R2 values of 0.99 for both datasets in terms of regression. Therefore, the proposed architecture facilitates multifaceted assessment and enhances the capacity to capture the inherent geospatial aspects of large-scale energy distribution networks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信