Higher-Order Far-Field Boundary Conditions for Crystalline Defects

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Julian Braun, Christoph Ortner, Yangshuai Wang, Lei Zhang
{"title":"Higher-Order Far-Field Boundary Conditions for Crystalline Defects","authors":"Julian Braun, Christoph Ortner, Yangshuai Wang, Lei Zhang","doi":"10.1137/24m165836x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 520-541, April 2025. <br/> Abstract. Crystalline materials exhibit long-range elastic fields due to the presence of defects, leading to significant domain size effects in atomistic simulations. A rigorous far-field expansion of these long-range fields identifies low-rank structure in the form of a sum of discrete multipole terms and continuum predictors [J. Braun, T. Hudson, and C. Ortner, Arch. Ration. Mech. Anal., 245 (2022), pp. 1437–1490]. We propose a novel numerical scheme that exploits this low-rank structure to accelerate material defect simulations by minimizing the domain size effects. Our approach iteratively improves the boundary condition, systematically following the asymptotic expansion of the far field. We provide both rigorous error estimates for the method and a range of empirical numerical tests to assess its convergence and robustness.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"18 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m165836x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 520-541, April 2025.
Abstract. Crystalline materials exhibit long-range elastic fields due to the presence of defects, leading to significant domain size effects in atomistic simulations. A rigorous far-field expansion of these long-range fields identifies low-rank structure in the form of a sum of discrete multipole terms and continuum predictors [J. Braun, T. Hudson, and C. Ortner, Arch. Ration. Mech. Anal., 245 (2022), pp. 1437–1490]. We propose a novel numerical scheme that exploits this low-rank structure to accelerate material defect simulations by minimizing the domain size effects. Our approach iteratively improves the boundary condition, systematically following the asymptotic expansion of the far field. We provide both rigorous error estimates for the method and a range of empirical numerical tests to assess its convergence and robustness.
晶体缺陷的高阶远场边界条件
SIAM数值分析杂志,第63卷,第2期,第520-541页,2025年4月。摘要。晶体材料由于缺陷的存在而表现出长程弹性场,导致原子模拟中显著的畴尺寸效应。对这些远场进行了严格的远场扩展,以离散多极项和连续预测因子的总和的形式识别低秩结构[J]。布劳恩,T.哈德森和C.奥特纳,Arch。配给。动力机械。分析的。中国科学,245 (2022),pp. 1437-1490]。我们提出了一种新的数值方案,利用这种低秩结构通过最小化畴尺寸效应来加速材料缺陷的模拟。我们的方法迭代地改进了边界条件,系统地遵循远场渐近展开。我们为该方法提供了严格的误差估计和一系列经验数值测试,以评估其收敛性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信