{"title":"Plug and Play Detector Design for DC Microgrids With Unknown-Inputs-Based FDI Attack","authors":"Zhihua Wu;Chen Peng;Engang Tian;Yajian Zhang","doi":"10.1109/TSG.2025.3548110","DOIUrl":null,"url":null,"abstract":"DC microgrids, due to their deep integration of control, computing, communication technologies, and physical equipment, are susceptible to cyber-attacks. Consequently, this paper is dedicated to the development of a novel attack-defense framework for generalized DC microgrids. Firstly, an unknown-inputs-based false data injection (FDI) attack strategy is studied from the adversary’s perspective, unlike traditional stealthy attacks requiring non-minimum phase zeros or unstable poles, which conceals the attack signal as false unknown inputs (FUI) to maliciously disrupt current sharing and voltage balancing. Secondly, a comprehensive analysis of the stealthiness and destructiveness of FUI attack is provided, and a dual-observer-based detector is well constructed to detect the FUI attack and isolate the compromised distributed generation units. Then, structured Lyapunov matrix and semidefinite programming are ingeniously employed to solve the distributed observer gains simultaneously. Moreover, plug and play (PnP) performance is also analyzed to ensure the scalability of proposed FUI attack detector. Finally, the destructiveness and stealthiness of proposed FUI attack, as well as the effectiveness of designed detection scheme are demonstrated through simulations using MATLAB/SimPowerSystems Toolbox.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 3","pages":"2052-2064"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10912791/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
DC microgrids, due to their deep integration of control, computing, communication technologies, and physical equipment, are susceptible to cyber-attacks. Consequently, this paper is dedicated to the development of a novel attack-defense framework for generalized DC microgrids. Firstly, an unknown-inputs-based false data injection (FDI) attack strategy is studied from the adversary’s perspective, unlike traditional stealthy attacks requiring non-minimum phase zeros or unstable poles, which conceals the attack signal as false unknown inputs (FUI) to maliciously disrupt current sharing and voltage balancing. Secondly, a comprehensive analysis of the stealthiness and destructiveness of FUI attack is provided, and a dual-observer-based detector is well constructed to detect the FUI attack and isolate the compromised distributed generation units. Then, structured Lyapunov matrix and semidefinite programming are ingeniously employed to solve the distributed observer gains simultaneously. Moreover, plug and play (PnP) performance is also analyzed to ensure the scalability of proposed FUI attack detector. Finally, the destructiveness and stealthiness of proposed FUI attack, as well as the effectiveness of designed detection scheme are demonstrated through simulations using MATLAB/SimPowerSystems Toolbox.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.