L-Systems and the Lovász Number

IF 1 2区 数学 Q1 MATHEMATICS
William Linz
{"title":"L-Systems and the Lovász Number","authors":"William Linz","doi":"10.1007/s00493-025-00136-4","DOIUrl":null,"url":null,"abstract":"<p>Given integers <span>\\(n&gt; k &gt; 0\\)</span>, and a set of integers <span>\\(L \\subset [0, k-1]\\)</span>, an <i>L</i>-<i>system</i> is a family of sets <span>\\(\\mathcal {F}\\subset \\left( {\\begin{array}{c}[n]\\\\ k\\end{array}}\\right) \\)</span> such that <span>\\(|F \\cap F'| \\in L\\)</span> for distinct <span>\\(F, F'\\in \\mathcal {F}\\)</span>. <i>L</i>-systems correspond to independent sets in a certain generalized Johnson graph <i>G</i>(<i>n</i>, <i>k</i>, <i>L</i>), so that the maximum size of an <i>L</i>-system is equivalent to finding the independence number of the graph <i>G</i>(<i>n</i>, <i>k</i>, <i>L</i>). The <i>Lovász number</i> <span>\\(\\vartheta (G)\\)</span> is a semidefinite programming approximation of the independence number <span>\\(\\alpha \\)</span> of a graph <i>G</i>. In this paper, we determine the leading order term of <span>\\(\\vartheta (G(n, k, L))\\)</span> of any generalized Johnson graph with <i>k</i> and <i>L</i> fixed and <span>\\(n\\rightarrow \\infty \\)</span>. As an application of this theorem, we give an explicit construction of a graph <i>G</i> on <i>n</i> vertices with a large gap between the Lovász number and the Shannon capacity <i>c</i>(<i>G</i>). Specifically, we prove that for any <span>\\(\\epsilon &gt; 0\\)</span>, for infinitely many <i>n</i> there is a generalized Johnson graph <i>G</i> on <i>n</i> vertices which has ratio <span>\\(\\vartheta (G)/c(G) = \\Omega (n^{1-\\epsilon })\\)</span>, which improves on all known constructions. The graph <i>G</i> <i>a fortiori</i> also has ratio <span>\\(\\vartheta (G)/\\alpha (G) = \\Omega (n^{1-\\epsilon })\\)</span>, which greatly improves on the best known explicit construction.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"127 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00136-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given integers \(n> k > 0\), and a set of integers \(L \subset [0, k-1]\), an L-system is a family of sets \(\mathcal {F}\subset \left( {\begin{array}{c}[n]\\ k\end{array}}\right) \) such that \(|F \cap F'| \in L\) for distinct \(F, F'\in \mathcal {F}\). L-systems correspond to independent sets in a certain generalized Johnson graph G(nkL), so that the maximum size of an L-system is equivalent to finding the independence number of the graph G(nkL). The Lovász number \(\vartheta (G)\) is a semidefinite programming approximation of the independence number \(\alpha \) of a graph G. In this paper, we determine the leading order term of \(\vartheta (G(n, k, L))\) of any generalized Johnson graph with k and L fixed and \(n\rightarrow \infty \). As an application of this theorem, we give an explicit construction of a graph G on n vertices with a large gap between the Lovász number and the Shannon capacity c(G). Specifically, we prove that for any \(\epsilon > 0\), for infinitely many n there is a generalized Johnson graph G on n vertices which has ratio \(\vartheta (G)/c(G) = \Omega (n^{1-\epsilon })\), which improves on all known constructions. The graph G a fortiori also has ratio \(\vartheta (G)/\alpha (G) = \Omega (n^{1-\epsilon })\), which greatly improves on the best known explicit construction.

l系统和Lovász数字
给定整数\(n> k > 0\)和一组整数\(L \subset [0, k-1]\), l系统是一个集合族\(\mathcal {F}\subset \left( {\begin{array}{c}[n]\\ k\end{array}}\right) \),其中\(|F \cap F'| \in L\)表示不同的\(F, F'\in \mathcal {F}\)。L-系统对应于某广义Johnson图G(n, k, L)中的独立集,因此L-系统的最大大小等价于求图G(n, k, L)的独立数。Lovász数\(\vartheta (G)\)是图G的独立数\(\alpha \)的半定规划逼近。本文确定了任意k、L固定且\(n\rightarrow \infty \)的广义Johnson图\(\vartheta (G(n, k, L))\)的首阶项。作为该定理的一个应用,我们给出了n个顶点上的图G的显式构造,其中Lovász数与香农容量c(G)之间有很大的差距。具体地说,我们证明了对于任意\(\epsilon > 0\),对于无穷多个n,存在一个有n个顶点的广义Johnson图G,其比率为\(\vartheta (G)/c(G) = \Omega (n^{1-\epsilon })\),它改进了所有已知的结构。图G a fortiori也有比值\(\vartheta (G)/\alpha (G) = \Omega (n^{1-\epsilon })\),这大大改进了最著名的显式构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信