Yanping Zhao, Dan Lin, Xiaoying Zhu, Jingyao Yan, Yan Liang, Yanli Wang, Tianqi Dai, Zhiyi Zhang, Shuya Wang
{"title":"SDF-1 alleviates osteoarthritis by resolving mitochondrial dysfunction through the activation of the Sirt3/PGC-1α signalling pathway","authors":"Yanping Zhao, Dan Lin, Xiaoying Zhu, Jingyao Yan, Yan Liang, Yanli Wang, Tianqi Dai, Zhiyi Zhang, Shuya Wang","doi":"10.1186/s13075-025-03509-8","DOIUrl":null,"url":null,"abstract":"Osteoarthritis (OA) is the most common form of joint disease. Currently, OA treatment is limited to controlling symptoms. Our previous study showed that stromal cell-derived factor 1 (SDF-1) delayed the progression of OA to a certain extent. The aim of this study was to explore the specific mechanism of SDF-1 in OA. OA chondrocytes and a collagen-induced osteoarthritis (CIOA) mouse model were used as in vitro and in vivo models, respectively. SDF-1 was used to treat OA in vitro and in vivo. To explore the mechanism of SDF-1 in OA treatment, we pretreated chondrocytes with a Sirt 3 inhibitor and assessed mitochondrial function and then analysed related indicators of cartilage anabolic and cartilage metabolism. SOD2 and PGC-1α levels were significantly lower in OA chondrocytes and the cartilage of CIOA model mice than in normal chondrocytes, and mitochondrial dysfunction occurred in OA. After treating OA chondrocytes and CIOA model mice with exogenous SDF-1, mitochondrial dysfunction and abnormal biomarkers of OA normalized. The pretreatment of OA chondrocytes with a Sirt 3 inhibitor or mitochondrial function inhibitor before SDF-1 exposure reversed these changes. SDF-1 can alleviate OA by resolving mitochondrial dysfunction through the activation of the Sirt3/PGC-1α signalling pathway, and therefore, SDF-1 may be a good candidate as a new treatment for OA.","PeriodicalId":8419,"journal":{"name":"Arthritis Research & Therapy","volume":"85 4 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13075-025-03509-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is the most common form of joint disease. Currently, OA treatment is limited to controlling symptoms. Our previous study showed that stromal cell-derived factor 1 (SDF-1) delayed the progression of OA to a certain extent. The aim of this study was to explore the specific mechanism of SDF-1 in OA. OA chondrocytes and a collagen-induced osteoarthritis (CIOA) mouse model were used as in vitro and in vivo models, respectively. SDF-1 was used to treat OA in vitro and in vivo. To explore the mechanism of SDF-1 in OA treatment, we pretreated chondrocytes with a Sirt 3 inhibitor and assessed mitochondrial function and then analysed related indicators of cartilage anabolic and cartilage metabolism. SOD2 and PGC-1α levels were significantly lower in OA chondrocytes and the cartilage of CIOA model mice than in normal chondrocytes, and mitochondrial dysfunction occurred in OA. After treating OA chondrocytes and CIOA model mice with exogenous SDF-1, mitochondrial dysfunction and abnormal biomarkers of OA normalized. The pretreatment of OA chondrocytes with a Sirt 3 inhibitor or mitochondrial function inhibitor before SDF-1 exposure reversed these changes. SDF-1 can alleviate OA by resolving mitochondrial dysfunction through the activation of the Sirt3/PGC-1α signalling pathway, and therefore, SDF-1 may be a good candidate as a new treatment for OA.
期刊介绍:
Established in 1999, Arthritis Research and Therapy is an international, open access, peer-reviewed journal, publishing original articles in the area of musculoskeletal research and therapy as well as, reviews, commentaries and reports. A major focus of the journal is on the immunologic processes leading to inflammation, damage and repair as they relate to autoimmune rheumatic and musculoskeletal conditions, and which inform the translation of this knowledge into advances in clinical care. Original basic, translational and clinical research is considered for publication along with results of early and late phase therapeutic trials, especially as they pertain to the underpinning science that informs clinical observations in interventional studies.