{"title":"Reconfigurable Metasurface for Enhanced Imaging and Image Denoising","authors":"Sandeep Kumar Chamoli","doi":"10.1002/adts.202400747","DOIUrl":null,"url":null,"abstract":"<p>Optical metasurfaces (flat optics) allow unprecedented control over light, enabling multi-dimensional light modulation. We propose a non-local metasurface hosted by phase change material Sb<sub>2</sub>S<sub>3</sub> for tunable image processing. It supports three imaging modalities: bright field, edge detection, and image denoising for intensity noise, functioning as diffractive image denoisers. The Structural Similarity Index Measure is used as a metric between the input noisy image and the denoised image. By tuning the phase of Sb<sub>2</sub>S<sub>3</sub>, its refractive index changes, effectively shifting the electromagnetic modes and resulting in these imaging modalities by providing the required optical transfer function (OTF). We optimized the metasurface design to achieve the required OTF and performed simulations on complex images with many corners and 2-dimensional structures. We introduced salt and pepper noise into the input image and conducted simulations to evaluate performance. We discuss the shape of the OTF for image denoising applications and its adaptation for simultaneous image denoising and edge detection, both of which involve high spatial frequencies of the object. Our dynamically tunable metasurface platform can seamlessly integrate with standard coherent imaging systems, enabling versatile operations on the input image.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"8 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adts.202400747","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Optical metasurfaces (flat optics) allow unprecedented control over light, enabling multi-dimensional light modulation. We propose a non-local metasurface hosted by phase change material Sb2S3 for tunable image processing. It supports three imaging modalities: bright field, edge detection, and image denoising for intensity noise, functioning as diffractive image denoisers. The Structural Similarity Index Measure is used as a metric between the input noisy image and the denoised image. By tuning the phase of Sb2S3, its refractive index changes, effectively shifting the electromagnetic modes and resulting in these imaging modalities by providing the required optical transfer function (OTF). We optimized the metasurface design to achieve the required OTF and performed simulations on complex images with many corners and 2-dimensional structures. We introduced salt and pepper noise into the input image and conducted simulations to evaluate performance. We discuss the shape of the OTF for image denoising applications and its adaptation for simultaneous image denoising and edge detection, both of which involve high spatial frequencies of the object. Our dynamically tunable metasurface platform can seamlessly integrate with standard coherent imaging systems, enabling versatile operations on the input image.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics