Near-infrared spectroscopic study of blood flow changes in the dorsolateral prefrontal cortex during pain relief by odor stimulation.

IF 1.6 Q4 BIOPHYSICS
Biophysics and physicobiology Pub Date : 2024-12-26 eCollection Date: 2025-01-01 DOI:10.2142/biophysico.bppb-v22.0001
Yuki Okamura, Shogo Takayama, Kengo Namiki, Fusako Koshikawa, Etsuro Ito
{"title":"Near-infrared spectroscopic study of blood flow changes in the dorsolateral prefrontal cortex during pain relief by odor stimulation.","authors":"Yuki Okamura, Shogo Takayama, Kengo Namiki, Fusako Koshikawa, Etsuro Ito","doi":"10.2142/biophysico.bppb-v22.0001","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pain is an unpleasant experience caused by sensory and emotional instability, sometimes independent of actual tissue damage. Pain relief can greatly impact psychologic, social, and economic well-being. Aromatherapy has long been used to alleviate pain and previous studies demonstrated that odors alter cerebral blood flow. In the present study, we used near-infrared spectroscopy to test our hypothesis that olfactory stimulation contributes to pain relief by altering cerebral blood flow in brain regions associated with pain. Pain was induced by transcutaneous electrical stimulation and assessed using a visual analog scale. Peppermint and lavender olfactory stimuli were used. Based on previous results, we focused on the prefrontal cortex. A placebo experiment in which only air stimulation was presented revealed minimal changes in blood flow in the ventromedial prefrontal cortex when comparing pain stimulation alone and a combination of placebo and pain stimulation. We then examined changes in blood flow following the presentation of peppermint or lavender scents. Significant differences in blood flow were observed in the dorsolateral prefrontal cortex (DLPFC) between pain stimulation alone and pain stimulation combined with odor stimulation. These findings supported our previous finding that the DLPFC is involved in pain relief by patch-adhered stimulation, but odor stimulation activated the right DLPFC whereas patch-adhered stimulation suppressed the left DLPFC. One interpretation of the discrepancy is that the contrast of activation between the right and left DLPFC is important in pain relief. Our research will help to elucidate the neurologic mechanisms underlying pain relief.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"22 1","pages":"e220001"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v22.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic pain is an unpleasant experience caused by sensory and emotional instability, sometimes independent of actual tissue damage. Pain relief can greatly impact psychologic, social, and economic well-being. Aromatherapy has long been used to alleviate pain and previous studies demonstrated that odors alter cerebral blood flow. In the present study, we used near-infrared spectroscopy to test our hypothesis that olfactory stimulation contributes to pain relief by altering cerebral blood flow in brain regions associated with pain. Pain was induced by transcutaneous electrical stimulation and assessed using a visual analog scale. Peppermint and lavender olfactory stimuli were used. Based on previous results, we focused on the prefrontal cortex. A placebo experiment in which only air stimulation was presented revealed minimal changes in blood flow in the ventromedial prefrontal cortex when comparing pain stimulation alone and a combination of placebo and pain stimulation. We then examined changes in blood flow following the presentation of peppermint or lavender scents. Significant differences in blood flow were observed in the dorsolateral prefrontal cortex (DLPFC) between pain stimulation alone and pain stimulation combined with odor stimulation. These findings supported our previous finding that the DLPFC is involved in pain relief by patch-adhered stimulation, but odor stimulation activated the right DLPFC whereas patch-adhered stimulation suppressed the left DLPFC. One interpretation of the discrepancy is that the contrast of activation between the right and left DLPFC is important in pain relief. Our research will help to elucidate the neurologic mechanisms underlying pain relief.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信