Class-Agnostic Repetitive Action Counting Using Wearable Devices.

Duc Duy Nguyen, Lam Thanh Nguyen, Yifeng Huang, Cuong Pham, Minh Hoai
{"title":"Class-Agnostic Repetitive Action Counting Using Wearable Devices.","authors":"Duc Duy Nguyen, Lam Thanh Nguyen, Yifeng Huang, Cuong Pham, Minh Hoai","doi":"10.1109/TPAMI.2025.3548131","DOIUrl":null,"url":null,"abstract":"<p><p>We present Class-agnostic Repetitive action Counting (CaRaCount), a novel approach to count repetitive human actions in the wild using wearable devices time series data. CaRaCount is the first few-shot class-agnostic method, being able to count repetitions of any action class with only a short exemplar data sequence containing a few examples from the action class of interest. To develop and evaluate this method, we collect a large-scale time series dataset of repetitive human actions in various context, containing smartwatch data from 10 subjects performing 50 different activities. Experiments on this dataset and three other activity counting datasets namely Crossfit, Recofit, and MM-Fit show that CaRaCount can count repetitive actions with low error, and it outperforms other baselines and state-of-the-art action counting methods. Finally, with a user experience study, we evaluate the usability of our real-time implementation. Our results highlight the efficiency and effectiveness of our approach when deployed outside the laboratory environments.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3548131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present Class-agnostic Repetitive action Counting (CaRaCount), a novel approach to count repetitive human actions in the wild using wearable devices time series data. CaRaCount is the first few-shot class-agnostic method, being able to count repetitions of any action class with only a short exemplar data sequence containing a few examples from the action class of interest. To develop and evaluate this method, we collect a large-scale time series dataset of repetitive human actions in various context, containing smartwatch data from 10 subjects performing 50 different activities. Experiments on this dataset and three other activity counting datasets namely Crossfit, Recofit, and MM-Fit show that CaRaCount can count repetitive actions with low error, and it outperforms other baselines and state-of-the-art action counting methods. Finally, with a user experience study, we evaluate the usability of our real-time implementation. Our results highlight the efficiency and effectiveness of our approach when deployed outside the laboratory environments.

使用可穿戴设备进行类别不可知性重复动作计数。
我们提出了一种与类别无关的重复动作计数(caraccount),这是一种使用可穿戴设备时间序列数据来计数野外重复人类动作的新方法。caraccount是第一个与类无关的方法,它只使用包含感兴趣的动作类的几个示例的简短示例数据序列来计算任何动作类的重复次数。为了开发和评估这种方法,我们收集了一个大规模的时间序列数据集,其中包含了在各种环境下重复的人类行为,其中包含了10个受试者执行50种不同活动的智能手表数据。在该数据集和其他三个活动计数数据集(Crossfit、Recofit和MM-Fit)上的实验表明,caraccount可以以低误差对重复动作进行计数,并且优于其他基线和最先进的动作计数方法。最后,通过用户体验研究,我们评估了实时实现的可用性。我们的结果突出了我们的方法在实验室环境之外部署时的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信