Estimation of elbow flexion torque using equilibrium optimizer on feature selection of NMES MMG signals and hyperparameter tuning of random forest regression.

IF 1.3 Q3 REHABILITATION
Frontiers in rehabilitation sciences Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.3389/fresc.2025.1469797
Raphael Uwamahoro, Kenneth Sundaraj, Farah Shahnaz Feroz
{"title":"Estimation of elbow flexion torque using equilibrium optimizer on feature selection of NMES MMG signals and hyperparameter tuning of random forest regression.","authors":"Raphael Uwamahoro, Kenneth Sundaraj, Farah Shahnaz Feroz","doi":"10.3389/fresc.2025.1469797","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The assessment of limb joint torque is essential for understanding musculoskeletal system dynamics. Yet, the lack of direct muscle strength measurement techniques has prompted previous research to deploy joint torque estimation using machine learning models. These models often suffer from reduced estimation accuracies due to the presence of redundant and irrelevant information within the rapidly expanding complex biomedical datasets as well as suboptimal hyperparameters configurations.</p><p><strong>Methods: </strong>This study utilized a random forest regression (RFR) model to estimate elbow flexion torque using mechanomyography (MMG) signals recorded during electrical stimulation of the biceps brachii (BB) muscle in 36 right-handed healthy subjects. Given the significance of both feature engineering and hyperparameter tuning in optimizing RFR performance, this study proposes a hybrid method leveraging the General Learning Equilibrium Optimizer (GLEO) to identify most informative MMG features and tune RFR hyperparameters. The performance of the GLEO-coupled with the RFR model was compared with the standard Equilibrium Optimizer (EO) and other state-of-the-art algorithms in physical and physiological function estimation using biological signals.</p><p><strong>Results: </strong>Experimental results showed that selected features and tuned hyperparameters demonstrated a significant improvement in root mean square error (RMSE), coefficient of determination (R<sup>2</sup>) and slope with values improving from 0.1330 to 0.1174, 0.7228 to 0.7853 and 0.6946 to 0.7414, respectively for the test dataset. Convergence analysis further revealed that the GLEO algorithm exhibited a superior learning capability compared to EO.</p><p><strong>Conclusion: </strong>This study underscores the potential of the hybrid GLEO approach in selecting highly informative features and optimizing hyperparameters for machine learning models. These advancements are essential for evaluating muscle function and represent a significant advancement in musculoskeletal biomechanics research.</p>","PeriodicalId":73102,"journal":{"name":"Frontiers in rehabilitation sciences","volume":"6 ","pages":"1469797"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in rehabilitation sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fresc.2025.1469797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The assessment of limb joint torque is essential for understanding musculoskeletal system dynamics. Yet, the lack of direct muscle strength measurement techniques has prompted previous research to deploy joint torque estimation using machine learning models. These models often suffer from reduced estimation accuracies due to the presence of redundant and irrelevant information within the rapidly expanding complex biomedical datasets as well as suboptimal hyperparameters configurations.

Methods: This study utilized a random forest regression (RFR) model to estimate elbow flexion torque using mechanomyography (MMG) signals recorded during electrical stimulation of the biceps brachii (BB) muscle in 36 right-handed healthy subjects. Given the significance of both feature engineering and hyperparameter tuning in optimizing RFR performance, this study proposes a hybrid method leveraging the General Learning Equilibrium Optimizer (GLEO) to identify most informative MMG features and tune RFR hyperparameters. The performance of the GLEO-coupled with the RFR model was compared with the standard Equilibrium Optimizer (EO) and other state-of-the-art algorithms in physical and physiological function estimation using biological signals.

Results: Experimental results showed that selected features and tuned hyperparameters demonstrated a significant improvement in root mean square error (RMSE), coefficient of determination (R2) and slope with values improving from 0.1330 to 0.1174, 0.7228 to 0.7853 and 0.6946 to 0.7414, respectively for the test dataset. Convergence analysis further revealed that the GLEO algorithm exhibited a superior learning capability compared to EO.

Conclusion: This study underscores the potential of the hybrid GLEO approach in selecting highly informative features and optimizing hyperparameters for machine learning models. These advancements are essential for evaluating muscle function and represent a significant advancement in musculoskeletal biomechanics research.

基于平衡优化器的NMES MMG信号特征选择和随机森林回归超参数整定的弯头弯曲力矩估计。
背景:肢体关节扭矩的评估是理解肌肉骨骼系统动力学的必要条件。然而,由于缺乏直接的肌肉力量测量技术,导致之前的研究使用机器学习模型来部署关节扭矩估计。由于在快速扩展的复杂生物医学数据集中存在冗余和不相关信息以及次优超参数配置,这些模型通常会降低估计精度。方法:本研究采用随机森林回归(RFR)模型,利用电刺激肱二头肌(BB)时记录的肌力图(MMG)信号估计36名右利手健康受试者的肘关节屈曲扭矩。考虑到特征工程和超参数调优在优化RFR性能方面的重要性,本研究提出了一种利用通用学习平衡优化器(GLEO)来识别最具信息量的MMG特征和调优RFR超参数的混合方法。在使用生物信号进行生理功能估计时,将gleo -耦合RFR模型的性能与标准均衡优化器(EO)和其他最先进的算法进行了比较。结果:实验结果表明,对于测试数据集,选择的特征和调整的超参数在均方根误差(RMSE)、决定系数(R2)和斜率上有显著改善,其值分别从0.1330提高到0.1174、0.7228提高到0.7853和0.6946提高到0.7414。收敛性分析进一步表明,GLEO算法比EO算法具有更强的学习能力。结论:本研究强调了混合GLEO方法在选择高信息量特征和优化机器学习模型超参数方面的潜力。这些进展对于评估肌肉功能至关重要,代表了肌肉骨骼生物力学研究的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信