The Role of AI in Cardiovascular Event Monitoring and Early Detection: Scoping Literature Review.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS
Luis B Elvas, Ana Almeida, Joao C Ferreira
{"title":"The Role of AI in Cardiovascular Event Monitoring and Early Detection: Scoping Literature Review.","authors":"Luis B Elvas, Ana Almeida, Joao C Ferreira","doi":"10.2196/64349","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) has shown exponential growth and advancements, revolutionizing various fields, including health care. However, domain adaptation remains a significant challenge, as machine learning (ML) models often need to be applied across different health care settings with varying patient demographics and practices. This issue is critical for ensuring effective and equitable AI deployment. Cardiovascular diseases (CVDs), the leading cause of global mortality with 17.9 million annual deaths, encompass conditions like coronary heart disease and hypertension. The increasing availability of medical data, coupled with AI advancements, offers new opportunities for early detection and intervention in cardiovascular events, leveraging AI's capacity to analyze complex datasets and uncover critical patterns.</p><p><strong>Objective: </strong>This review aims to examine AI methodologies combined with medical data to advance the intelligent monitoring and detection of CVDs, identifying areas for further research to enhance patient outcomes and support early interventions.</p><p><strong>Methods: </strong>This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to ensure a rigorous and transparent literature review process. This structured approach facilitated a comprehensive overview of the current state of research in this field.</p><p><strong>Results: </strong>Through the methodology used, 64 documents were retrieved, of which 40 documents met the inclusion criteria. The reviewed papers demonstrate advancements in AI and ML for CVD detection, classification, prediction, diagnosis, and patient monitoring. Techniques such as ensemble learning, deep neural networks, and feature selection improve prediction accuracy over traditional methods. ML models predict cardiovascular events and risks, with applications in monitoring via wearable technology. The integration of AI in health care supports early detection, personalized treatment, and risk assessment, possibly improving the management of CVDs.</p><p><strong>Conclusions: </strong>The study concludes that AI and ML techniques can improve the accuracy of CVD classification, prediction, diagnosis, and monitoring. The integration of multiple data sources and noninvasive methods supports continuous monitoring and early detection. These advancements help enhance CVD management and patient outcomes, indicating the potential for AI to offer more precise and cost-effective solutions in health care.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e64349"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64349","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artificial intelligence (AI) has shown exponential growth and advancements, revolutionizing various fields, including health care. However, domain adaptation remains a significant challenge, as machine learning (ML) models often need to be applied across different health care settings with varying patient demographics and practices. This issue is critical for ensuring effective and equitable AI deployment. Cardiovascular diseases (CVDs), the leading cause of global mortality with 17.9 million annual deaths, encompass conditions like coronary heart disease and hypertension. The increasing availability of medical data, coupled with AI advancements, offers new opportunities for early detection and intervention in cardiovascular events, leveraging AI's capacity to analyze complex datasets and uncover critical patterns.

Objective: This review aims to examine AI methodologies combined with medical data to advance the intelligent monitoring and detection of CVDs, identifying areas for further research to enhance patient outcomes and support early interventions.

Methods: This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to ensure a rigorous and transparent literature review process. This structured approach facilitated a comprehensive overview of the current state of research in this field.

Results: Through the methodology used, 64 documents were retrieved, of which 40 documents met the inclusion criteria. The reviewed papers demonstrate advancements in AI and ML for CVD detection, classification, prediction, diagnosis, and patient monitoring. Techniques such as ensemble learning, deep neural networks, and feature selection improve prediction accuracy over traditional methods. ML models predict cardiovascular events and risks, with applications in monitoring via wearable technology. The integration of AI in health care supports early detection, personalized treatment, and risk assessment, possibly improving the management of CVDs.

Conclusions: The study concludes that AI and ML techniques can improve the accuracy of CVD classification, prediction, diagnosis, and monitoring. The integration of multiple data sources and noninvasive methods supports continuous monitoring and early detection. These advancements help enhance CVD management and patient outcomes, indicating the potential for AI to offer more precise and cost-effective solutions in health care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信