{"title":"The Role of AI in Cardiovascular Event Monitoring and Early Detection: Scoping Literature Review.","authors":"Luis B Elvas, Ana Almeida, Joao C Ferreira","doi":"10.2196/64349","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) has shown exponential growth and advancements, revolutionizing various fields, including health care. However, domain adaptation remains a significant challenge, as machine learning (ML) models often need to be applied across different health care settings with varying patient demographics and practices. This issue is critical for ensuring effective and equitable AI deployment. Cardiovascular diseases (CVDs), the leading cause of global mortality with 17.9 million annual deaths, encompass conditions like coronary heart disease and hypertension. The increasing availability of medical data, coupled with AI advancements, offers new opportunities for early detection and intervention in cardiovascular events, leveraging AI's capacity to analyze complex datasets and uncover critical patterns.</p><p><strong>Objective: </strong>This review aims to examine AI methodologies combined with medical data to advance the intelligent monitoring and detection of CVDs, identifying areas for further research to enhance patient outcomes and support early interventions.</p><p><strong>Methods: </strong>This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to ensure a rigorous and transparent literature review process. This structured approach facilitated a comprehensive overview of the current state of research in this field.</p><p><strong>Results: </strong>Through the methodology used, 64 documents were retrieved, of which 40 documents met the inclusion criteria. The reviewed papers demonstrate advancements in AI and ML for CVD detection, classification, prediction, diagnosis, and patient monitoring. Techniques such as ensemble learning, deep neural networks, and feature selection improve prediction accuracy over traditional methods. ML models predict cardiovascular events and risks, with applications in monitoring via wearable technology. The integration of AI in health care supports early detection, personalized treatment, and risk assessment, possibly improving the management of CVDs.</p><p><strong>Conclusions: </strong>The study concludes that AI and ML techniques can improve the accuracy of CVD classification, prediction, diagnosis, and monitoring. The integration of multiple data sources and noninvasive methods supports continuous monitoring and early detection. These advancements help enhance CVD management and patient outcomes, indicating the potential for AI to offer more precise and cost-effective solutions in health care.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e64349"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64349","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial intelligence (AI) has shown exponential growth and advancements, revolutionizing various fields, including health care. However, domain adaptation remains a significant challenge, as machine learning (ML) models often need to be applied across different health care settings with varying patient demographics and practices. This issue is critical for ensuring effective and equitable AI deployment. Cardiovascular diseases (CVDs), the leading cause of global mortality with 17.9 million annual deaths, encompass conditions like coronary heart disease and hypertension. The increasing availability of medical data, coupled with AI advancements, offers new opportunities for early detection and intervention in cardiovascular events, leveraging AI's capacity to analyze complex datasets and uncover critical patterns.
Objective: This review aims to examine AI methodologies combined with medical data to advance the intelligent monitoring and detection of CVDs, identifying areas for further research to enhance patient outcomes and support early interventions.
Methods: This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to ensure a rigorous and transparent literature review process. This structured approach facilitated a comprehensive overview of the current state of research in this field.
Results: Through the methodology used, 64 documents were retrieved, of which 40 documents met the inclusion criteria. The reviewed papers demonstrate advancements in AI and ML for CVD detection, classification, prediction, diagnosis, and patient monitoring. Techniques such as ensemble learning, deep neural networks, and feature selection improve prediction accuracy over traditional methods. ML models predict cardiovascular events and risks, with applications in monitoring via wearable technology. The integration of AI in health care supports early detection, personalized treatment, and risk assessment, possibly improving the management of CVDs.
Conclusions: The study concludes that AI and ML techniques can improve the accuracy of CVD classification, prediction, diagnosis, and monitoring. The integration of multiple data sources and noninvasive methods supports continuous monitoring and early detection. These advancements help enhance CVD management and patient outcomes, indicating the potential for AI to offer more precise and cost-effective solutions in health care.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.