Rapid, Reliable, and Interpretable Copy Number Variant Curation Visualizations for Diagnostic Settings with SeeNV.

IF 3.4 3区 医学 Q1 PATHOLOGY
Michael S Bradshaw, Jishnu Raychaudhuri, Lachlan Murphy, Rebecca Barnard, Taylor Firman, Alisa A Gaskell, Ryan M Layer
{"title":"Rapid, Reliable, and Interpretable Copy Number Variant Curation Visualizations for Diagnostic Settings with SeeNV.","authors":"Michael S Bradshaw, Jishnu Raychaudhuri, Lachlan Murphy, Rebecca Barnard, Taylor Firman, Alisa A Gaskell, Ryan M Layer","doi":"10.1016/j.jmoldx.2025.01.008","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number variants (CNVs), structural alterations in the genome involving duplication or deletion of DNA segments, are implicated in various health conditions. Despite their clinical significance, accurate identification and interpretation of CNVs remain challenging, especially in the context of whole-exome sequencing (WES), which is commonly used in clinical diagnostic laboratories. Although WES offers economic advantages over whole-genome sequencing, it struggles with CNV detection because of technical noise introduced by laboratory and analytic processes. Manual curation of CNV calls generated by these tools is labor intensive and error prone. To address this, SeeNV, a command-line tool, is introduced to aid manual curation of CNVs at scale. SeeNV is one solution to these issues, developed in collaboration with and used by the Precision Diagnostics Laboratory at Children's Hospital Colorado. SeeNV generates static infographics for each CNV, incorporating sample and cohort sequencing coverage statistics, CNV population frequency, and, more, facilitating rapid and precise assessment. Using CNV calls identified in publicly available WES and whole-genome sequencing samples, users can rapidly and reliably curate CNV calls, needing only 4.3 seconds to curate a call, achieving 0.95 recall (analytical sensitivity) and 0.74 precision (positive predictive value). SeeNV is freely available for download on GitHub.</p>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jmoldx.2025.01.008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Copy number variants (CNVs), structural alterations in the genome involving duplication or deletion of DNA segments, are implicated in various health conditions. Despite their clinical significance, accurate identification and interpretation of CNVs remain challenging, especially in the context of whole-exome sequencing (WES), which is commonly used in clinical diagnostic laboratories. Although WES offers economic advantages over whole-genome sequencing, it struggles with CNV detection because of technical noise introduced by laboratory and analytic processes. Manual curation of CNV calls generated by these tools is labor intensive and error prone. To address this, SeeNV, a command-line tool, is introduced to aid manual curation of CNVs at scale. SeeNV is one solution to these issues, developed in collaboration with and used by the Precision Diagnostics Laboratory at Children's Hospital Colorado. SeeNV generates static infographics for each CNV, incorporating sample and cohort sequencing coverage statistics, CNV population frequency, and, more, facilitating rapid and precise assessment. Using CNV calls identified in publicly available WES and whole-genome sequencing samples, users can rapidly and reliably curate CNV calls, needing only 4.3 seconds to curate a call, achieving 0.95 recall (analytical sensitivity) and 0.74 precision (positive predictive value). SeeNV is freely available for download on GitHub.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
2.40%
发文量
143
审稿时长
43 days
期刊介绍: The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信