The CXCR6-CXCL16 axis mediates T cell control of polyomavirus infection in the kidney.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2025-03-05 eCollection Date: 2025-03-01 DOI:10.1371/journal.ppat.1012969
Matthew D Lauver, Zoe E Katz, Havell Markus, Nicole M Derosia, Ge Jin, Katelyn N Ayers, Arrienne B Butic, Kaitlyn Bushey, Catherine S Abendroth, Dajiang J Liu, Aron E Lukacher
{"title":"The CXCR6-CXCL16 axis mediates T cell control of polyomavirus infection in the kidney.","authors":"Matthew D Lauver, Zoe E Katz, Havell Markus, Nicole M Derosia, Ge Jin, Katelyn N Ayers, Arrienne B Butic, Kaitlyn Bushey, Catherine S Abendroth, Dajiang J Liu, Aron E Lukacher","doi":"10.1371/journal.ppat.1012969","DOIUrl":null,"url":null,"abstract":"<p><p>BK polyomavirus (PyV) establishes lifelong asymptomatic infections in the reno-urinary system of most humans. BKPyV-associated nephropathy is the leading infectious cause of kidney allograft loss. Using mouse PyV, a natural murine pathogen that also persists in the kidney, we define a dominant chemokine receptor-chemokine axis that directs T cell infiltration of the kidney. We found that CXCR6 was required for CD4+ and CD8+ T cells to be recruited to and retained in the kidney, respectively. Absence of CXCR6 impaired virus control in the kidney. The soluble form of CXCL16 was increased in kidneys of infected mice and in vivo CXCL16 neutralization reduced numbers of virus-specific CD8+ T cells infiltrating the kidney. In vivo administration of IL-12 upregulated CXCR6 expression on virus-specific CD8+ T cells, improved T cell recruitment to the infected kidney, and reduced virus levels. Notably, T cells in kidney biopsies from PyV-associated nephropathy patients express CXCR6 and transcriptional analysis shows significant upregulation of CXCR6 and CXCL16. These findings demonstrate the importance of the CXCR6-CXCL16 axis in regulating T cell responses in the kidney to PyV infection.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 3","pages":"e1012969"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012969","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BK polyomavirus (PyV) establishes lifelong asymptomatic infections in the reno-urinary system of most humans. BKPyV-associated nephropathy is the leading infectious cause of kidney allograft loss. Using mouse PyV, a natural murine pathogen that also persists in the kidney, we define a dominant chemokine receptor-chemokine axis that directs T cell infiltration of the kidney. We found that CXCR6 was required for CD4+ and CD8+ T cells to be recruited to and retained in the kidney, respectively. Absence of CXCR6 impaired virus control in the kidney. The soluble form of CXCL16 was increased in kidneys of infected mice and in vivo CXCL16 neutralization reduced numbers of virus-specific CD8+ T cells infiltrating the kidney. In vivo administration of IL-12 upregulated CXCR6 expression on virus-specific CD8+ T cells, improved T cell recruitment to the infected kidney, and reduced virus levels. Notably, T cells in kidney biopsies from PyV-associated nephropathy patients express CXCR6 and transcriptional analysis shows significant upregulation of CXCR6 and CXCL16. These findings demonstrate the importance of the CXCR6-CXCL16 axis in regulating T cell responses in the kidney to PyV infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信