Hybrid model of feature-driven modular neural network-based grasshopper optimization algorithm for diabetic retinopathy classification using fundus images.
IF 2.6 4区 医学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"Hybrid model of feature-driven modular neural network-based grasshopper optimization algorithm for diabetic retinopathy classification using fundus images.","authors":"D Binny Jeba Durai, T Jaya","doi":"10.1007/s11517-025-03307-z","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a progressive condition that can lead to blindness if undiagnosed or untreated. Automatic systems for DR prediction using fundus images have been developed, but challenges like variable illumination, overfitting, small datasets, poor feature learning, high computational complexity, and suboptimal feature weighting persist. To address these, a hybrid model called the modular neural network with grasshopper optimization algorithm (MNN-GOA) is proposed. This model integrates neural network capabilities with the grasshopper optimization algorithm (GOA) to enhance feature selection and classification accuracy. It begins with preprocessing to improve image quality, followed by data augmentation and histogram-based segmentation to focus on critical regions. Features are extracted using techniques like histogram of oriented gradients (HOG), scale-invariant feature transform (SIFT), color features, and mutual information (MI). GOA optimizes feature weights, balancing exploration and exploitation, while reducing computational complexity. The model integrates features from ground truth and original images to predict DR stages accurately. Achieving performance metrics of accuracy (98.8%), specificity (97.6%), sensitivity (96.8%), precision (96.4%), and F1 score (96.2%), the MNN-GOA model was validated on four datasets like DIARETDB1, DDR, APTOS 2019, and EyePACS and outperformed existing methods, proving to be a robust and efficient solution for DR classification and severity prediction.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03307-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy (DR) is a progressive condition that can lead to blindness if undiagnosed or untreated. Automatic systems for DR prediction using fundus images have been developed, but challenges like variable illumination, overfitting, small datasets, poor feature learning, high computational complexity, and suboptimal feature weighting persist. To address these, a hybrid model called the modular neural network with grasshopper optimization algorithm (MNN-GOA) is proposed. This model integrates neural network capabilities with the grasshopper optimization algorithm (GOA) to enhance feature selection and classification accuracy. It begins with preprocessing to improve image quality, followed by data augmentation and histogram-based segmentation to focus on critical regions. Features are extracted using techniques like histogram of oriented gradients (HOG), scale-invariant feature transform (SIFT), color features, and mutual information (MI). GOA optimizes feature weights, balancing exploration and exploitation, while reducing computational complexity. The model integrates features from ground truth and original images to predict DR stages accurately. Achieving performance metrics of accuracy (98.8%), specificity (97.6%), sensitivity (96.8%), precision (96.4%), and F1 score (96.2%), the MNN-GOA model was validated on four datasets like DIARETDB1, DDR, APTOS 2019, and EyePACS and outperformed existing methods, proving to be a robust and efficient solution for DR classification and severity prediction.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).