Biochemical investigations using mass spectrometry to monitor JMJD6-catalysed hydroxylation of multi-lysine containing bromodomain-derived substrates.

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Thomas P Corner, Eidarus Salah, Anthony Tumber, Lennart Brewitz, Christopher J Schofield
{"title":"Biochemical investigations using mass spectrometry to monitor JMJD6-catalysed hydroxylation of multi-lysine containing bromodomain-derived substrates.","authors":"Thomas P Corner, Eidarus Salah, Anthony Tumber, Lennart Brewitz, Christopher J Schofield","doi":"10.1039/d4cb00311j","DOIUrl":null,"url":null,"abstract":"<p><p>Jumonji-C domain-containing protein 6 (JMJD6) is a human 2-oxoglutarate (2OG)/Fe(ii)-dependent oxygenase catalysing post-translational C5 hydroxylation of multiple lysine residues, including in the bromodomain-containing proteins BRD2, BRD3 and BRD4. The role(s) of JMJD6-catalysed substrate hydroxylation are unclear. JMJD6 is important in development and JMJD6 catalysis may promote cancer. We report solid-phase extraction coupled to mass spectrometry assays monitoring JMJD6-catalysed hydroxylation of BRD2-4 derived oligopeptides containing multiple lysyl residues. The assays enabled determination of apparent steady-state kinetic parameters for 2OG, Fe(ii), l-ascorbate, O<sub>2</sub> and BRD substrates. The JMJD6 <i>K</i> <sup>app</sup> <sub>m</sub> for O<sub>2</sub> was comparable to that reported for the structurally related 2OG oxygenase factor inhibiting hypoxia-inducible factor-α (FIH), suggesting potential for limitation of JMJD6 activity by O<sub>2</sub> availability in cells, as proposed for FIH and some other 2OG oxygenases. The new assays will help development of small-molecule JMJD6 inhibitors for functional assignment studies and as potential cancer therapeutics.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4cb00311j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Jumonji-C domain-containing protein 6 (JMJD6) is a human 2-oxoglutarate (2OG)/Fe(ii)-dependent oxygenase catalysing post-translational C5 hydroxylation of multiple lysine residues, including in the bromodomain-containing proteins BRD2, BRD3 and BRD4. The role(s) of JMJD6-catalysed substrate hydroxylation are unclear. JMJD6 is important in development and JMJD6 catalysis may promote cancer. We report solid-phase extraction coupled to mass spectrometry assays monitoring JMJD6-catalysed hydroxylation of BRD2-4 derived oligopeptides containing multiple lysyl residues. The assays enabled determination of apparent steady-state kinetic parameters for 2OG, Fe(ii), l-ascorbate, O2 and BRD substrates. The JMJD6 K app m for O2 was comparable to that reported for the structurally related 2OG oxygenase factor inhibiting hypoxia-inducible factor-α (FIH), suggesting potential for limitation of JMJD6 activity by O2 availability in cells, as proposed for FIH and some other 2OG oxygenases. The new assays will help development of small-molecule JMJD6 inhibitors for functional assignment studies and as potential cancer therapeutics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信