Environment sustainability with smart grid sensor.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-19 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1510410
Sheetal Mahadik, Madhuri Gedam, Deven Shah
{"title":"Environment sustainability with smart grid sensor.","authors":"Sheetal Mahadik, Madhuri Gedam, Deven Shah","doi":"10.3389/frai.2024.1510410","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental sustainability is a pressing global concern, with energy conservation and efficient utilization playing a key role in its achievement. Smart grid technology has emerged as a promising solution, facilitating energy efficiency, promoting renewable energy integration, and fostering consumer engagement. But the addition of intelligent sensors to these grids has the potential to greatly increase the level of sustainability initiatives. <i>This paper highlights the role of smart grid sensors in addressing challenges like energy losses, demand-response limitations, and renewable energy integration. It explains how these sensors enable real-time monitoring, fault detection, and optimal load management to improve grid performance and reduce environmental impact.</i> This also study looks at how AI with smart grid sensor can perform real-time data monitoring, optimal energy distribution, and proactive decision support from smart grid sensors might improve environmental sustainability. <i>Furthermore, it examines advancements in sensor technologies in India, including pilot projects like the BESCOM initiative in Bangalore and Tata Power-DDL's renewable energy trading in Delhi, to showcase their practical applications and outcomes.</i> Smart sensors provide accurate tracking of energy usage trends, enhance load distribution, and advance the sensible application of renewable energy resources. These sensors aid in cutting down on energy waste and carbon emissions by interacting with customers and enabling demand-response systems. This study addresses the critical role of smart sensors in overcoming the shortcomings of conventional grids and guaranteeing a more resilient, efficient, and sustainable energy future through an extensive analysis of the literature. Grid-enabled systems, such as electric water heaters with sensor, can achieve energy savings of up to 29%. The integration of renewable energy sources through sensors enhances system efficiency, reduces reliance on fossil fuels, and optimizes supply and demand. Utilizing Internet of Things (IoT) technology enables precise monitoring of air quality, water consumption, and resource management, significantly improving environmental oversight. This integration can lead to a reduction in greenhouse gas emissions by up to 20% and water usage by 30%. <i>Lastly, the paper discusses how integrating artificial intelligence with smart grid sensors can enhance predictive maintenance, energy management, and cybersecurity, further strengthening the case for their deployment.</i></p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1510410"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1510410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental sustainability is a pressing global concern, with energy conservation and efficient utilization playing a key role in its achievement. Smart grid technology has emerged as a promising solution, facilitating energy efficiency, promoting renewable energy integration, and fostering consumer engagement. But the addition of intelligent sensors to these grids has the potential to greatly increase the level of sustainability initiatives. This paper highlights the role of smart grid sensors in addressing challenges like energy losses, demand-response limitations, and renewable energy integration. It explains how these sensors enable real-time monitoring, fault detection, and optimal load management to improve grid performance and reduce environmental impact. This also study looks at how AI with smart grid sensor can perform real-time data monitoring, optimal energy distribution, and proactive decision support from smart grid sensors might improve environmental sustainability. Furthermore, it examines advancements in sensor technologies in India, including pilot projects like the BESCOM initiative in Bangalore and Tata Power-DDL's renewable energy trading in Delhi, to showcase their practical applications and outcomes. Smart sensors provide accurate tracking of energy usage trends, enhance load distribution, and advance the sensible application of renewable energy resources. These sensors aid in cutting down on energy waste and carbon emissions by interacting with customers and enabling demand-response systems. This study addresses the critical role of smart sensors in overcoming the shortcomings of conventional grids and guaranteeing a more resilient, efficient, and sustainable energy future through an extensive analysis of the literature. Grid-enabled systems, such as electric water heaters with sensor, can achieve energy savings of up to 29%. The integration of renewable energy sources through sensors enhances system efficiency, reduces reliance on fossil fuels, and optimizes supply and demand. Utilizing Internet of Things (IoT) technology enables precise monitoring of air quality, water consumption, and resource management, significantly improving environmental oversight. This integration can lead to a reduction in greenhouse gas emissions by up to 20% and water usage by 30%. Lastly, the paper discusses how integrating artificial intelligence with smart grid sensors can enhance predictive maintenance, energy management, and cybersecurity, further strengthening the case for their deployment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信