XAI-MRI: an ensemble dual-modality approach for 3D brain tumor segmentation using magnetic resonance imaging.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1525240
Ahmeed Suliman Farhan, Muhammad Khalid, Umar Manzoor
{"title":"XAI-MRI: an ensemble dual-modality approach for 3D brain tumor segmentation using magnetic resonance imaging.","authors":"Ahmeed Suliman Farhan, Muhammad Khalid, Umar Manzoor","doi":"10.3389/frai.2025.1525240","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumor segmentation from Magnetic Resonance Images (MRI) presents significant challenges due to the complex nature of brain tumor tissues. This complexity poses a significant challenge in distinguishing tumor tissues from healthy tissues, particularly when radiologists rely on manual segmentation. Reliable and accurate segmentation is crucial for effective tumor grading and treatment planning. In this paper, we proposed a novel ensemble dual-modality approach for 3D brain tumor segmentation using MRI. Initially, individual U-Net models are trained and evaluated on single MRI modalities (T1, T2, T1ce, and FLAIR) to establish each modality's performance. Subsequently, we trained U-net models using combinations of the best-performing modalities to exploit the complementary information and improve segmentation accuracy. Finally, we introduced the ensemble dual-modality by combining the two best-performing pre-trained dual-modalities models to enhance segmentation performance. Experimental results show that the proposed model enhanced the segmentation result and achieved a Dice Coefficient of 97.73% and a Mean IoU of 60.08%. The results illustrate that the ensemble dual-modality approach outperforms single-modality and dual-modality models. Grad-CAM visualizations are implemented, generating heat maps that highlight tumor regions and provide useful information to clinicians about how the model made the decision, increasing their confidence in using deep learning-based systems. Our code publicly available at: https://github.com/Ahmeed-Suliman-Farhan/Ensemble-Dual-Modality-Approach.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1525240"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1525240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumor segmentation from Magnetic Resonance Images (MRI) presents significant challenges due to the complex nature of brain tumor tissues. This complexity poses a significant challenge in distinguishing tumor tissues from healthy tissues, particularly when radiologists rely on manual segmentation. Reliable and accurate segmentation is crucial for effective tumor grading and treatment planning. In this paper, we proposed a novel ensemble dual-modality approach for 3D brain tumor segmentation using MRI. Initially, individual U-Net models are trained and evaluated on single MRI modalities (T1, T2, T1ce, and FLAIR) to establish each modality's performance. Subsequently, we trained U-net models using combinations of the best-performing modalities to exploit the complementary information and improve segmentation accuracy. Finally, we introduced the ensemble dual-modality by combining the two best-performing pre-trained dual-modalities models to enhance segmentation performance. Experimental results show that the proposed model enhanced the segmentation result and achieved a Dice Coefficient of 97.73% and a Mean IoU of 60.08%. The results illustrate that the ensemble dual-modality approach outperforms single-modality and dual-modality models. Grad-CAM visualizations are implemented, generating heat maps that highlight tumor regions and provide useful information to clinicians about how the model made the decision, increasing their confidence in using deep learning-based systems. Our code publicly available at: https://github.com/Ahmeed-Suliman-Farhan/Ensemble-Dual-Modality-Approach.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信