Hugh C McCullough, Hyun-Seob Song, Jennifer M Auchtung
{"title":"Diversity in chemical subunits and linkages: a key molecular determinant of microbial richness, microbiota interactions, and substrate utilization.","authors":"Hugh C McCullough, Hyun-Seob Song, Jennifer M Auchtung","doi":"10.1128/spectrum.02618-24","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary fibers play a significant role in shaping the composition and function of microbial communities in the human colon. Our understanding of the specific chemical traits of dietary fibers that influence microbial diversity, interactions, and function remains limited. Toward filling this knowledge gap, we developed a novel measure, termed Chemical Subunits and Linkages (CheSL) Shannon diversity, to characterize the effects of carbohydrate complexity on human fecal bacteria cultured <i>in vitro</i> under controlled, continuous flow conditions using media that systematically varied in carbohydrate composition. Our analysis revealed that CheSL Shannon diversity demonstrated a strong Pearson correlation with microbial richness across multiple fecal samples and study designs. Additionally, we observed that microbial communities in media with higher CheSL Shannon diversity scores exhibited greater peptide utilization and more connected, reproducible structures in computationally inferred microbial interaction networks. Taken together, these findings demonstrate that CheSL Shannon diversity can be a useful tool to quantify the effects of carbohydrate complexity on microbial diversity, metabolic potential, and interactions. Furthermore, our work highlights how robust and stable community data can be generated by engineering media composition and structure. These studies provide a valuable framework for future research on microbial community interactions and their potential impacts on host health.IMPORTANCEFor the human adult gut microbiota, higher microbial diversity strongly correlates with positive health outcomes. This correlation is likely due to increased community resilience that results from functional redundancy that can occur within diverse communities. While previous studies have shown that dietary fibers influence microbiota composition and function, we lack a complete mechanistic understanding of how differences in the composition of fibers are likely to functionally impact microbiota diversity. To address this need, we developed Chemical Subunits and Linkages Shannon diversity, a novel measure that describes carbohydrate complexity. Using this measure, we were able to correlate changes in carbohydrate complexity with alterations in microbial diversity and interspecies interactions. Overall, these analyses provide new perspectives on dietary optimization strategies to improve human health.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0261824"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.02618-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dietary fibers play a significant role in shaping the composition and function of microbial communities in the human colon. Our understanding of the specific chemical traits of dietary fibers that influence microbial diversity, interactions, and function remains limited. Toward filling this knowledge gap, we developed a novel measure, termed Chemical Subunits and Linkages (CheSL) Shannon diversity, to characterize the effects of carbohydrate complexity on human fecal bacteria cultured in vitro under controlled, continuous flow conditions using media that systematically varied in carbohydrate composition. Our analysis revealed that CheSL Shannon diversity demonstrated a strong Pearson correlation with microbial richness across multiple fecal samples and study designs. Additionally, we observed that microbial communities in media with higher CheSL Shannon diversity scores exhibited greater peptide utilization and more connected, reproducible structures in computationally inferred microbial interaction networks. Taken together, these findings demonstrate that CheSL Shannon diversity can be a useful tool to quantify the effects of carbohydrate complexity on microbial diversity, metabolic potential, and interactions. Furthermore, our work highlights how robust and stable community data can be generated by engineering media composition and structure. These studies provide a valuable framework for future research on microbial community interactions and their potential impacts on host health.IMPORTANCEFor the human adult gut microbiota, higher microbial diversity strongly correlates with positive health outcomes. This correlation is likely due to increased community resilience that results from functional redundancy that can occur within diverse communities. While previous studies have shown that dietary fibers influence microbiota composition and function, we lack a complete mechanistic understanding of how differences in the composition of fibers are likely to functionally impact microbiota diversity. To address this need, we developed Chemical Subunits and Linkages Shannon diversity, a novel measure that describes carbohydrate complexity. Using this measure, we were able to correlate changes in carbohydrate complexity with alterations in microbial diversity and interspecies interactions. Overall, these analyses provide new perspectives on dietary optimization strategies to improve human health.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.