{"title":"Ovarian tachykinin signaling system induces the growth of secondary follicles during the gonadotropin-independent process.","authors":"Tsuyoshi Kawada, Masato Aoyama, Shin Matsubara, Tomohiro Osugi, Tsubasa Sakai, Shinji Kirimoto, Satsuki Nakaoka, Yuki Sugiura, Keiko Yasuda, Honoo Satake","doi":"10.1016/j.jbc.2025.108375","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian follicle growth development is mainly regulated by the hypothalamus-pituitary-gonadal axis after puberty. Although pituitary hormones, gonadotropins, are involved in hypothalamus-pituitary-gonadal axis signaling, they are not responsible for the growth of early stage follicles, namely, primordial follicles, primary follicles, and secondary follicles, in both sexually immature and mature individuals. Unlike those of gonadotropin-dependent follicle growth, the specific regulatory factors of gonadotropin-independent follicle growth have yet to be identified. Here, we identified tachykinins (TKs) as inducers of gonadotropin-independent secondary follicle growth. TKs play various roles as neuropeptides or hormones in a wide variety of biological events both in the central nervous system and in peripheral tissues, but a direct effect of TKs on ovarian follicles has yet to investigated. Follicle development was suppressed in sexually immature 3-week-old KO mice of Tac1 gene encoding TKs (substance P and neurokinin A), which is independent of gonadotropins. TKs and their receptors are specifically localized to granulosa cells in mouse secondary follicles. Furthermore, TKs upregulate the prostaglandin (PG) synthase cyclooxygenase 2 via the Janus kinase 1-signal transducers and activators of transcription protein 3 signaling cascade. We also demonstrated that PGE2 and PGF2α are major PGs in the immature ovary, and the secondary follicle growth was enhanced by interaction between PGE2-PGF2α and their receptors, PGE2 receptor localized in the oocyte membrane and PGF2α receptor localized in the oocyte membrane, granulosa cells, and theca cells. Consequently, this study paves the way for exploring gonadotropin-independent early stage follicle growth systems and relevant dysfunctions, including pediatric endocrinological diseases.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108375"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108375","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mammalian follicle growth development is mainly regulated by the hypothalamus-pituitary-gonadal axis after puberty. Although pituitary hormones, gonadotropins, are involved in hypothalamus-pituitary-gonadal axis signaling, they are not responsible for the growth of early stage follicles, namely, primordial follicles, primary follicles, and secondary follicles, in both sexually immature and mature individuals. Unlike those of gonadotropin-dependent follicle growth, the specific regulatory factors of gonadotropin-independent follicle growth have yet to be identified. Here, we identified tachykinins (TKs) as inducers of gonadotropin-independent secondary follicle growth. TKs play various roles as neuropeptides or hormones in a wide variety of biological events both in the central nervous system and in peripheral tissues, but a direct effect of TKs on ovarian follicles has yet to investigated. Follicle development was suppressed in sexually immature 3-week-old KO mice of Tac1 gene encoding TKs (substance P and neurokinin A), which is independent of gonadotropins. TKs and their receptors are specifically localized to granulosa cells in mouse secondary follicles. Furthermore, TKs upregulate the prostaglandin (PG) synthase cyclooxygenase 2 via the Janus kinase 1-signal transducers and activators of transcription protein 3 signaling cascade. We also demonstrated that PGE2 and PGF2α are major PGs in the immature ovary, and the secondary follicle growth was enhanced by interaction between PGE2-PGF2α and their receptors, PGE2 receptor localized in the oocyte membrane and PGF2α receptor localized in the oocyte membrane, granulosa cells, and theca cells. Consequently, this study paves the way for exploring gonadotropin-independent early stage follicle growth systems and relevant dysfunctions, including pediatric endocrinological diseases.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.