Dukwon Lee, Yeongjin Baek, Migak Park, Doyeon Kim, Kyumi Byun, Jaekyung Hyun, Nam-Chul Ha
{"title":"3D meshwork architecture of the outer coat protein CotE: implications for bacterial endospore sporulation and germination.","authors":"Dukwon Lee, Yeongjin Baek, Migak Park, Doyeon Kim, Kyumi Byun, Jaekyung Hyun, Nam-Chul Ha","doi":"10.1128/mbio.02472-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bacillus cereus,</i> a Gram-positive aerobic bacterium commonly found in soil, food, and water, forms endospores that can withstand harsh environmental conditions. The endospores are encased in a protective spore coat consisting of multiple layers of proteins, among which, CotE serves as a crucial morphogenetic protein within the outer coat. In this study, we observed that the homotrimeric CotE protein underwent further oligomerization induced by Ca<sup>2+</sup> and was subsequently dissociated by dipicolinic acid, a compound released from the spore core during germination. Through cryo-electron microscopy and tomography analyses of the Ca<sup>2+</sup>-induced CotE oligomer, combined with structural predictions and biochemical studies, we propose a three-dimensional meshwork organization facilitated by tryptophan-based interactions between CotE trimers. The resulting meshwork was organized in a defective diamond-like tetrahedral configuration. These insights enhance our understanding of how CotE contributes to endospore morphogenesis and germination through the rapid disassembly of these layers.</p><p><strong>Importance: </strong>Bacterial endospores are highly resilient structures that allow bacteria to survive extreme environmental conditions, making them a significant concern in food safety and healthcare. The protein CotE plays a critical role in forming the protective outer coat of these endospores. Our research uncovers the three-dimensional meshwork architecture of CotE and reveals how it contributes to the structural integrity and rapid disassembly of endospores during germination. By understanding CotE's unique 3D structure and its interaction with other molecules, we gain valuable insights into how bacterial endospores are formed and how they can be effectively targeted for sterilization. This work not only advances our fundamental knowledge of bacterial endospore biology but also has potential applications in developing new strategies to combat bacterial contamination and improve sterilization techniques in the food and healthcare industries.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0247224"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02472-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacillus cereus, a Gram-positive aerobic bacterium commonly found in soil, food, and water, forms endospores that can withstand harsh environmental conditions. The endospores are encased in a protective spore coat consisting of multiple layers of proteins, among which, CotE serves as a crucial morphogenetic protein within the outer coat. In this study, we observed that the homotrimeric CotE protein underwent further oligomerization induced by Ca2+ and was subsequently dissociated by dipicolinic acid, a compound released from the spore core during germination. Through cryo-electron microscopy and tomography analyses of the Ca2+-induced CotE oligomer, combined with structural predictions and biochemical studies, we propose a three-dimensional meshwork organization facilitated by tryptophan-based interactions between CotE trimers. The resulting meshwork was organized in a defective diamond-like tetrahedral configuration. These insights enhance our understanding of how CotE contributes to endospore morphogenesis and germination through the rapid disassembly of these layers.
Importance: Bacterial endospores are highly resilient structures that allow bacteria to survive extreme environmental conditions, making them a significant concern in food safety and healthcare. The protein CotE plays a critical role in forming the protective outer coat of these endospores. Our research uncovers the three-dimensional meshwork architecture of CotE and reveals how it contributes to the structural integrity and rapid disassembly of endospores during germination. By understanding CotE's unique 3D structure and its interaction with other molecules, we gain valuable insights into how bacterial endospores are formed and how they can be effectively targeted for sterilization. This work not only advances our fundamental knowledge of bacterial endospore biology but also has potential applications in developing new strategies to combat bacterial contamination and improve sterilization techniques in the food and healthcare industries.
期刊介绍:
mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.