Analysing glycolysis-related genes reveals the prognostic and diagnostic relevance of IER3 and AGRN in colorectal cancer.

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genes & genomics Pub Date : 2025-05-01 Epub Date: 2025-03-06 DOI:10.1007/s13258-025-01618-x
Samaneh Dalali, Fatemeh Kaviani, Mohammad Mahdevar, Andisheh Oroujalian, Maryam Peymani
{"title":"Analysing glycolysis-related genes reveals the prognostic and diagnostic relevance of IER3 and AGRN in colorectal cancer.","authors":"Samaneh Dalali, Fatemeh Kaviani, Mohammad Mahdevar, Andisheh Oroujalian, Maryam Peymani","doi":"10.1007/s13258-025-01618-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) is a significant global health issue, with early detection being critical to improving patient survival. Dysregulation of the glycolysis pathway plays a pivotal role in CRC progression, but specific gene-level mechanisms remain underexplored.</p><p><strong>Objective: </strong>This study aimed to investigate the role of glycolysis-related genes in CRC development and identify potential diagnostic and prognostic biomarkers.</p><p><strong>Methods: </strong>We utilized The Cancer Genome Atlas (TCGA) dataset to perform differential expression analysis of glycolysis-related genes in CRC. Protein-protein interaction (PPI) network analysis was conducted to identify central hub genes. The diagnostic potential of selected genes was evaluated using ROC curve analysis, while their expression levels were validated through RT-qPCR.</p><p><strong>Results: </strong>IER3 and AGRN were identified as significantly upregulated genes associated with reduced survival rates in CRC patients. PPI analysis revealed their roles as central hub genes within the glycolysis pathway. ROC curve analysis demonstrated their ability to distinguish CRC patients from healthy individuals. Validation through RT-qPCR confirmed their significant overexpression in CRC samples, highlighting their involvement in disease progression.</p><p><strong>Conclusion: </strong>IER3 and AGRN are critical components of the glycolysis pathway, driving CRC development and progression while also showing potential as biomarkers for predicting outcomes, diagnosing CRC, and serving as treatment targets.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"509-520"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-025-01618-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Colorectal cancer (CRC) is a significant global health issue, with early detection being critical to improving patient survival. Dysregulation of the glycolysis pathway plays a pivotal role in CRC progression, but specific gene-level mechanisms remain underexplored.

Objective: This study aimed to investigate the role of glycolysis-related genes in CRC development and identify potential diagnostic and prognostic biomarkers.

Methods: We utilized The Cancer Genome Atlas (TCGA) dataset to perform differential expression analysis of glycolysis-related genes in CRC. Protein-protein interaction (PPI) network analysis was conducted to identify central hub genes. The diagnostic potential of selected genes was evaluated using ROC curve analysis, while their expression levels were validated through RT-qPCR.

Results: IER3 and AGRN were identified as significantly upregulated genes associated with reduced survival rates in CRC patients. PPI analysis revealed their roles as central hub genes within the glycolysis pathway. ROC curve analysis demonstrated their ability to distinguish CRC patients from healthy individuals. Validation through RT-qPCR confirmed their significant overexpression in CRC samples, highlighting their involvement in disease progression.

Conclusion: IER3 and AGRN are critical components of the glycolysis pathway, driving CRC development and progression while also showing potential as biomarkers for predicting outcomes, diagnosing CRC, and serving as treatment targets.

分析糖酵解相关基因揭示了IER3和agn在结直肠癌中的预后和诊断意义。
背景:结直肠癌(CRC)是一个重要的全球健康问题,早期发现对提高患者生存率至关重要。糖酵解途径的失调在结直肠癌的进展中起着关键作用,但具体的基因水平机制仍未得到充分探讨。目的:本研究旨在探讨糖酵解相关基因在结直肠癌发展中的作用,并确定潜在的诊断和预后生物标志物。方法:利用癌症基因组图谱(TCGA)数据集对结直肠癌中糖酵解相关基因进行差异表达分析。利用蛋白-蛋白相互作用(PPI)网络分析鉴定中心枢纽基因。采用ROC曲线分析评估所选基因的诊断潜力,并通过RT-qPCR验证其表达水平。结果:在结直肠癌患者中,IER3和agn被确定为与生存率降低相关的显著上调基因。PPI分析揭示了它们在糖酵解途径中作为中心枢纽基因的作用。ROC曲线分析表明他们能够区分CRC患者和健康个体。通过RT-qPCR验证证实了它们在结直肠癌样本中的显著过表达,强调了它们参与疾病进展。结论:IER3和agn是糖酵解途径的关键组成部分,推动结直肠癌的发展和进展,同时也显示出作为预测预后、诊断结直肠癌和作为治疗靶点的生物标志物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信